Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En

这篇具有很好参考价值的文章主要介绍了Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


Python for Everybody

Exploring Data Using Python 3
Dr. Charles R. Severance


课程简介

Python for Everybody 零基础程序设计(Python 入门)

  • This course aims to teach everyone the basics of programming computers using Python. 本课程旨在向所有人传授使用 Python 进行计算机编程的基础知识。
  • We cover the basics of how one constructs a program from a series of simple instructions in Python. 我们介绍了如何通过 Python 中的一系列简单指令构建程序的基础知识。
  • The course has no pre-requisites and avoids all but the simplest mathematics. Anyone with moderate computer experience should be able to master the materials in this course. 该课程没有任何先决条件,除了最简单的数学之外,避免了所有内容。任何具有中等计算机经验的人都应该能够掌握本课程中的材料。
  • This course will cover Chapters 1-5 of the textbook “Python for Everybody”. Once a student completes this course, they will be ready to take more advanced programming courses. 本课程将涵盖《Python for Everyday》教科书的第 1-5 章。学生完成本课程后,他们将准备好学习更高级的编程课程。
  • This course covers Python 3.

Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En,# Python for Everybody,python,笔记,前端,学习

coursera

Python for Everybody 零基础程序设计(Python 入门)

Charles Russell Severance
Clinical Professor

Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En,# Python for Everybody,python,笔记,前端,学习

个人主页
Twitter

Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En,# Python for Everybody,python,笔记,前端,学习

University of Michigan


课程资源

coursera原版课程视频
coursera原版视频-中英文精校字幕-B站
Dr. Chuck官方翻录版视频-机器翻译字幕-B站

PY4E-课程配套练习
Dr. Chuck Online - 系列课程开源官网



Object-oriented programming

Python Objects.
We do a quick look at how Python supports the Object-Oriented programming pattern.


Managing larger programs

At the beginning of this book, we came up with four basic programming patterns which we use to construct programs:

  • Sequential code
  • Conditional code (if statements)
  • Repetitive code (loops)
  • Store and reuse (functions)

In later chapters, we explored simple variables as well as collection data structures like lists, tuples, and dictionaries.

As we build programs, we design data structures and write code to manipulate those data structures. There are many ways to write programs and by now, you probably have written some programs that are “not so elegant” and other programs that are “more elegant”. Even though your programs may be small, you are starting to see how there is a bit of art and aesthetic to writing code.

As programs get to be millions of lines long, it becomes increasingly important to write code that is easy to understand. If you are working on a million-line program, you can never keep the entire program in your mind at the same time. We need ways to break large programs into multiple smaller pieces so that we have less to look at when solving a problem, fix a bug, or add a new feature.

In a way, object oriented programming is a way to arrange your code so that you can zoom into 50 lines of the code and understand it while ignoring the other 999,950 lines of code for the moment.


Getting started

Like many aspects of programming, it is necessary to learn the concepts of object oriented programming before you can use them effectively. You should approach this chapter as a way to learn some terms and concepts and work through a few simple examples to lay a foundation for future learning.

The key outcome of this chapter is to have a basic understanding of how objects are constructed and how they function and most importantly how we make use of the capabilities of objects that are provided to us by Python and Python libraries.

Using objects

As it turns out, we have been using objects all along in this book. Python provides us with many built-in objects. Here is some simple code where the first few lines should feel very simple and natural to you.

stuff = list()
stuff.append('python')
stuff.append('chuck')
stuff.sort()
print (stuff[0])
print (stuff.__getitem__(0))
print (list.__getitem__(stuff,0))

# Code: http://www.py4e.com/code3/party1.py

Instead of focusing on what these lines accomplish, let’s look at what is really happening from the point of view of object-oriented programming. Don’t worry if the following paragraphs don’t make any sense the first time you read them because we have not yet defined all of these terms.

The first line constructs an object of type list, the second and third lines call the append() method, the fourth line calls the sort() method, and the fifth line retrieves the item at position 0.

The sixth line calls the __getitem__() method in the stuff list with a parameter of zero.

print (stuff.__getitem__(0))

The seventh line is an even more verbose way of retrieving the 0th item in the list.

print (list.__getitem__(stuff,0))

In this code, we call the __getitem__ method in the list class and pass the list and the item we want retrieved from the list as parameters.

The last three lines of the program are equivalent, but it is more convenient to simply use the square bracket syntax to look up an item at a particular position in a list.

We can take a look at the capabilities of an object by looking at the output of the dir() function:

>>> stuff = list()
>>> dir(stuff)
['__add__', '__class__', '__contains__', '__delattr__',
'__delitem__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__getitem__',
'__gt__', '__hash__', '__iadd__', '__imul__', '__init__',
'__iter__', '__le__', '__len__', '__lt__', '__mul__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__reversed__', '__rmul__', '__setattr__',
'__setitem__', '__sizeof__', '__str__', '__subclasshook__',
'append', 'clear', 'copy', 'count', 'extend', 'index',
'insert', 'pop', 'remove', 'reverse', 'sort']
>>>

The rest of this chapter will define all of the above terms so make sure to come back after you finish the chapter and re-read the above paragraphs to check your understanding.


Starting with programs

A program in its most basic form takes some input, does some processing, and produces some output. Our elevator conversion program demonstrates a very short but complete program showing all three of these steps.

usf = input('Enter the US Floor Number: ')
wf = int(usf) - 1
print('Non-US Floor Number is',wf)

# Code: http://www.py4e.com/code3/elev.py

If we think a bit more about this program, there is the “outside world” and the program. The input and output aspects are where the program interacts with the outside world. Within the program we have code and data to accomplish the task the program is designed to solve.


Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En,# Python for Everybody,python,笔记,前端,学习

A Program


One way to think about object-oriented programming is that it separates our program into multiple “zones.” Each zone contains some code and data (like a program) and has well defined interactions with the outside world and the other zones within the program.

If we look back at the link extraction application where we used the BeautifulSoup library, we can see a program that is constructed by connecting different objects together to accomplish a task:

# To run this, download the BeautifulSoup zip file
# http://www.py4e.com/code3/bs4.zip
# and unzip it in the same directory as this file

import urllib.request, urllib.parse, urllib.error
from bs4 import BeautifulSoup
import ssl

# Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')
html = urllib.request.urlopen(url, context=ctx).read()
soup = BeautifulSoup(html, 'html.parser')

# Retrieve all of the anchor tags
tags = soup('a')
for tag in tags:
    print(tag.get('href', None))

# Code: http://www.py4e.com/code3/urllinks.py

We read the URL into a string and then pass that into urllib to retrieve the data from the web. The urllib library uses the socket library to make the actual network connection to retrieve the data. We take the string that urllib returns and hand it to BeautifulSoup for parsing. BeautifulSoup makes use of the object html.parser1 and returns an object. We call the tags() method on the returned object that returns a dictionary of tag objects. We loop through the tags and call the get() method for each tag to print out the href attribute.

We can draw a picture of this program and how the objects work together.


Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En,# Python for Everybody,python,笔记,前端,学习
A Program as Network of Objects


The key here is not to understand perfectly how this program works but to see how we build a network of interacting objects and orchestrate the movement of information between the objects to create a program. It is also important to note that when you looked at that program several chapters back, you could fully understand what was going on in the program without even realizing that the program was “orchestrating the movement of data between objects.” It was just lines of code that got the job done.


Subdividing a problem

One of the advantages of the object-oriented approach is that it can hide complexity. For example, while we need to know how to use the urllib and BeautifulSoup code, we do not need to know how those libraries work internally. This allows us to focus on the part of the problem we need to solve and ignore the other parts of the program.


Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En,# Python for Everybody,python,笔记,前端,学习
Ignoring Detail When Using an Object


This ability to focus exclusively on the part of a program that we care about and ignore the rest is also helpful to the developers of the objects that we use. For example, the programmers developing BeautifulSoup do not need to know or care about how we retrieve our HTML page, what parts we want to read, or what we plan to do with the data we extract from the web page.


Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En,# Python for Everybody,python,笔记,前端,学习
Ignoring Detail When Building an Object



Our first Python object

At a basic level, an object is simply some code plus data structures that are smaller than a whole program. Defining a function allows us to store a bit of code and give it a name and then later invoke that code using the name of the function.

An object can contain a number of functions (which we call methods) as well as data that is used by those functions. We call data items that are part of the object attributes.

We use the class keyword to define the data and code that will make up each of the objects. The class keyword includes the name of the class and begins an indented block of code where we include the attributes (data) and methods (code).

class PartyAnimal:
   x = 0

   def party(self) :
     self.x = self.x + 1
     print("So far",self.x)

an = PartyAnimal()
an.party()
an.party()
an.party()
PartyAnimal.party(an)

# Code: http://www.py4e.com/code3/party2.py

Each method looks like a function, starting with the def keyword and consisting of an indented block of code. This object has one attribute (x) and one method (party). The methods have a special first parameter that we name by convention self.

Just as the def keyword does not cause function code to be executed, the class keyword does not create an object. Instead, the class keyword defines a template indicating what data and code will be contained in each object of type PartyAnimal. The class is like a cookie cutter and the objects created using the class are the cookies2. You don’t put frosting on the cookie cutter; you put frosting on the cookies, and you can put different frosting on each cookie.


Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En,# Python for Everybody,python,笔记,前端,学习
A Class and Two Objects


If we continue through this sample program, we see the first executable line of code:

an = PartyAnimal()

This is where we instruct Python to construct (i.e., create) an object or instance of the class PartyAnimal. It looks like a function call to the class itself. Python constructs the object with the right data and methods and returns the object which is then assigned to the variable an. In a way this is quite similar to the following line which we have been using all along:

counts = dict()

Here we instruct Python to construct an object using the dict template (already present in Python), return the instance of dictionary, and assign it to the variable counts.

When the PartyAnimal class is used to construct an object, the variable an is used to point to that object. We use an to access the code and data for that particular instance of the PartyAnimal class.

Each Partyanimal object/instance contains within it a variable x and a method/function named party. We call the party method in this line:

an.party()

When the party method is called, the first parameter (which we call by convention self) points to the particular instance of the PartyAnimal object that party is called from. Within the party method, we see the line:

self.x = self.x + 1

This syntax using the dot operator is saying ‘the x within self.’ Each time party() is called, the internal x value is incremented by 1 and the value is printed out.

The following line is another way to call the party method within the an object:

PartyAnimal.party(an)

In this variation, we access the code from within the class and explicitly pass the object pointer an as the first parameter (i.e., self within the method). You can think of an.party() as shorthand for the above line.

When the program executes, it produces the following output:

So far 1
So far 2
So far 3
So far 4

The object is constructed, and the party method is called four times, both incrementing and printing the value for x within the an object.


Classes as types

As we have seen, in Python all variables have a type. We can use the built-in dir function to examine the capabilities of a variable. We can also use type and dir with the classes that we create.

class PartyAnimal:
   x = 0

   def party(self) :
     self.x = self.x + 1
     print("So far",self.x)

an = PartyAnimal()
print ("Type", type(an))
print ("Dir ", dir(an))
print ("Type", type(an.x))
print ("Type", type(an.party))

# Code: http://www.py4e.com/code3/party3.py

When this program executes, it produces the following output:

Type <class '__main__.PartyAnimal'>
Dir  ['__class__', '__delattr__', ...
'__sizeof__', '__str__', '__subclasshook__',
'__weakref__', 'party', 'x']
Type <class 'int'>
Type <class 'method'>

You can see that using the class keyword, we have created a new type. From the dir output, you can see both the x integer attribute and the party method are available in the object.


Object lifecycle

In the previous examples, we define a class (template), use that class to create an instance of that class (object), and then use the instance. When the program finishes, all of the variables are discarded. Usually, we don’t think much about the creation and destruction of variables, but often as our objects become more complex, we need to take some action within the object to set things up as the object is constructed and possibly clean things up as the object is discarded.

If we want our object to be aware of these moments of construction and destruction, we add specially named methods to our object:

class PartyAnimal:
   x = 0

   def __init__(self):
     print('I am constructed')

   def party(self) :
     self.x = self.x + 1
     print('So far',self.x)

   def __del__(self):
     print('I am destructed', self.x)

an = PartyAnimal()
an.party()
an.party()
an = 42
print('an contains',an)

# Code: http://www.py4e.com/code3/party4.py

When this program executes, it produces the following output:

I am constructed
So far 1
So far 2
I am destructed 2
an contains 42

As Python constructs our object, it calls our __init__ method to give us a chance to set up some default or initial values for the object. When Python encounters the line:

an = 42

It actually “throws our object away” so it can reuse the an variable to store the value 42. Just at the moment when our an object is being “destroyed” our destructor code (__del__) is called. We cannot stop our variable from being destroyed, but we can do any necessary cleanup right before our object no longer exists.

When developing objects, it is quite common to add a constructor to an object to set up initial values for the object. It is relatively rare to need a destructor for an object.


Multiple instances

So far, we have defined a class, constructed a single object, used that object, and then thrown the object away. However, the real power in object-oriented programming happens when we construct multiple instances of our class.

When we construct multiple objects from our class, we might want to set up different initial values for each of the objects. We can pass data to the constructors to give each object a different initial value:

class PartyAnimal:
   x = 0
   name = ''
   def __init__(self, nam):
     self.name = nam
     print(self.name,'constructed')

   def party(self) :
     self.x = self.x + 1
     print(self.name,'party count',self.x)

s = PartyAnimal('Sally')
j = PartyAnimal('Jim')

s.party()
j.party()
s.party()

# Code: http://www.py4e.com/code3/party5.py

The constructor has both a self parameter that points to the object instance and additional parameters that are passed into the constructor as the object is constructed:

s = PartyAnimal('Sally')

Within the constructor, the second line copies the parameter (nam) that is passed into the name attribute within the object instance.

self.name = nam

The output of the program shows that each of the objects (s and j) contain their own independent copies of x and nam:

Sally constructed
Jim constructed
Sally party count 1
Jim party count 1
Sally party count 2

Inheritance

Another powerful feature of object-oriented programming is the ability to create a new class by extending an existing class. When extending a class, we call the original class the parent class and the new class the child class.

For this example, we move our PartyAnimal class into its own file. Then, we can ‘import’ the PartyAnimal class in a new file and extend it, as follows:

from party import PartyAnimal

class CricketFan(PartyAnimal):
   points = 0
   def six(self):
      self.points = self.points + 6
      self.party()
      print(self.name,"points",self.points)

s = PartyAnimal("Sally")
s.party()
j = CricketFan("Jim")
j.party()
j.six()
print(dir(j))

# Code: http://www.py4e.com/code3/party6.py

When we define the CricketFan class, we indicate that we are extending the PartyAnimal class. This means that all of the variables (x) and methods (party) from the PartyAnimal class are inherited by the CricketFan class. For example, within the six method in the CricketFan class, we call the party method from the PartyAnimal class.

As the program executes, we create s and j as independent instances of PartyAnimal and CricketFan. The j object has additional capabilities beyond the s object.

Sally constructed
Sally party count 1
Jim constructed
Jim party count 1
Jim party count 2
Jim points 6
['__class__', '__delattr__', ... '__weakref__',
'name', 'party', 'points', 'six', 'x']

In the dir output for the j object (instance of the CricketFan class), we see that it has the attributes and methods of the parent class, as well as the attributes and methods that were added when the class was extended to create the CricketFan class.


Summary

This is a very quick introduction to object-oriented programming that focuses mainly on terminology and the syntax of defining and using objects. Let’s quickly review the code that we looked at in the beginning of the chapter. At this point you should fully understand what is going on.

stuff = list()
stuff.append('python')
stuff.append('chuck')
stuff.sort()
print (stuff[0])
print (stuff.__getitem__(0))
print (list.__getitem__(stuff,0))

# Code: http://www.py4e.com/code3/party1.py

The first line constructs a list object. When Python creates the list object, it calls the constructor method (named __init__) to set up the internal data attributes that will be used to store the list data. We have not passed any parameters to the constructor. When the constructor returns, we use the variable stuff to point to the returned instance of the list class.

The second and third lines call the append method with one parameter to add a new item at the end of the list by updating the attributes within stuff. Then in the fourth line, we call the sort method with no parameters to sort the data within the stuff object.

We then print out the first item in the list using the square brackets which are a shortcut to calling the __getitem__ method within the stuff. This is equivalent to calling the __getitem__ method in the list class and passing the stuff` object as the first parameter and the position we are looking for as the second parameter.

At the end of the program, the stuff object is discarded but not before calling the destructor (named __del__) so that the object can clean up any loose ends as necessary.

Those are the basics of object-oriented programming. There are many additional details as to how to best use object-oriented approaches when developing large applications and libraries that are beyond the scope of this chapter.3


Glossary

attribute
A variable that is part of a class.
class
A template that can be used to construct an object. Defines the attributes and methods that will make up the object.
child class
A new class created when a parent class is extended. The child class inherits all of the attributes and methods of the parent class.
constructor
An optional specially named method (__init__) that is called at the moment when a class is being used to construct an object. Usually this is used to set up initial values for the object.
destructor
An optional specially named method (__del__) that is called at the moment just before an object is destroyed. Destructors are rarely used.
inheritance
When we create a new class (child) by extending an existing class (parent). The child class has all the attributes and methods of the parent class plus additional attributes and methods defined by the child class.
method
A function that is contained within a class and the objects that are constructed from the class. Some object-oriented patterns use ‘message’ instead of ‘method’ to describe this concept.
object
A constructed instance of a class. An object contains all of the attributes and methods that were defined by the class. Some object-oriented documentation uses the term ‘instance’ interchangeably with ‘object’.
parent class
The class which is being extended to create a new child class. The parent class contributes all of its methods and attributes to the new child class.


  1. https://docs.python.org/3/library/html.parser.html ↩︎

  2. Cookie image copyright CC-BY https://www.flickr.com/photos/dinnerseries/23570475099 ↩︎

  3. If you are curious about where the list class is defined, take a look at (hopefully the URL won’t change) https://github.com/python/cpython/blob/master/Objects/listobject.c - the list class is written in a language called “C”. If you take a look at that source code and find it curious you might want to explore a few Computer Science courses. ↩︎文章来源地址https://www.toymoban.com/news/detail-725756.html

到了这里,关于Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 15-721 Chapter10 恢复协议

    为了在可能crash的情况下,确保事务和数据库状态的,一致性,原子性,持久性。恢复算法大体可以分为两个方面:1.在事务过程中要做哪些处理   2.崩溃后要做哪些处理。 1.恢复不需要跟踪dirty page 2.只要redo,不用undo 3.不需要记录index,直接重建index就好,如果从disk拿的话,

    2024年02月01日
    浏览(37)
  • 《算法通关之路》-chapter15回溯法

    《算法通关之路》学习笔记,记录一下自己的刷题过程,详细的内容请大家购买作者的书籍查阅。 全排列 力扣第46题 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 全排列 II 力扣第47题 给定一个可包含重复数字的序列 nums ,

    2024年02月16日
    浏览(37)
  • chapter15:springboot与监控管理

    Spring Boot与监控管理视频 通过引入 spring-boot-starter-actuator , 可以使用SpringBoot为我们提供的准生产环境下的应用监控和管理功能。我们可以通过http, jmx, ssh协议来进行操作,自动得到审计、健康及指标信息等。 步骤: 引入 spring-boot-starter-actuator ; 通过http方式访问监控端点;

    2024年02月14日
    浏览(32)
  • Thrift:The Ultimate Programming Language for Microservices

    作者:禅与计算机程序设计艺术 Thrift是Facebook开源的一款面向微服务开发的高性能远程过程调用(RPC)框架。它由Apache Thrift编译器生成的代码组成,可以运行于C++, Java, Python, PHP, Ruby等多种语言环境中。其能够实现客户端通过Thrift API与服务器进行通信,相比于一般的基于XML或

    2024年02月07日
    浏览(27)
  • Chapter 7 - 15. Congestion Management in Ethernet Storage Networks以太网存储网络的拥塞管理

    Congestion Notification in Routed Lossless Ethernet Networks End devices and their applications may not be aware of congestion in the network. A culprit device may continue to send (or solicit) more traffic on the network making the severity of congestion worse or increasing its duration. To solve this problem, the network switches can ‘explicitly’ notif

    2024年01月22日
    浏览(53)
  • Policy Iteration Adaptive Dynamic Programming Algorithm for Discrete-Time Nonlinear Systems

    本文是第一次对离散非线性系统采用策略迭代的方法分析收敛性和稳定性。反复实验获得 初始的可容许控制策略 ,迭代值函数是单调不增,收敛到HJB方程的最优值。证明任意迭代控制策略使非线性系统稳定。神经网络近似值函数和求最优控制,且分析权重矩阵的收敛性。 根

    2024年03月22日
    浏览(45)
  • Q & A for basic ERROR on programming(KEIL IDE)  -> enumerated type mixed with another type

          变量用 enum的typedf声明,但是赋值却用的常数而没用enum里的值,把实际常数改为enum里枚举的值         看下log里提示的是哪个文件,然后进去删一下空格换行什么的重新排版;删掉标点符号.

    2024年02月09日
    浏览(64)
  • SAP Fiori开发中的JavaScript基础知识15 - 原型,object,constructor,class,继承

    本文将介绍JavaScript中的核心概念 - 原型,并会介绍基于原型的应用场景object,constructor,class,继承。 本文会将这几个核心概念汇总在一篇博客中,因为这些概念是触类旁通的,希望对你有帮助。 在JavaScript中,几乎所有的东西都是对象,每个对象都有一个 特殊的内部属性

    2024年04月23日
    浏览(122)
  • Feature Pyramid Networks for object detection

    下图中,蓝色边框表示的是特征图, 边框越粗表示该特征图的语义信息越丰富 ,即在特征层次结构中位置越高。 这四个子图展示了如何在不同层级上提取和融合特征,以便于在不同尺度上进行有效的对象检测。 a) Featurized image pyramid (特征化图像金字塔): 这是传统方法,通

    2024年04月10日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包