氢原子的薛定谔方程
分离变量
定态薛定谔方程的一般形式为
H
Ψ
=
E
Ψ
H\Psi = E\Psi
HΨ=EΨ
其中
H
H
H为哈密顿算符,其在坐标表象下的形式为
H
=
−
ℏ
2
2
m
e
∇
2
+
V
(
r
)
H = -\frac{\hbar^2}{2m_e}\nabla^2 + V(r)
H=−2meℏ2∇2+V(r)
代入一般形式,并在球坐标下展开拉普拉斯算子,得
1
r
2
∂
∂
r
(
r
2
∂
Ψ
∂
r
)
+
1
r
2
sin
θ
∂
∂
θ
(
sin
θ
∂
Ψ
∂
θ
)
+
1
r
2
sin
2
θ
∂
2
Ψ
∂
φ
2
−
2
m
e
ℏ
2
[
V
(
r
)
−
E
]
Ψ
=
0
\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial\Psi}{\partial r}) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta\frac{\partial\Psi}{\partial \theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\Psi}{\partial\varphi^2} - \frac{2m_e}{\hbar^2}[V(r) - E]\Psi = 0
r21∂r∂(r2∂r∂Ψ)+r2sinθ1∂θ∂(sinθ∂θ∂Ψ)+r2sin2θ1∂φ2∂2Ψ−ℏ22me[V(r)−E]Ψ=0
假设
Ψ
(
r
,
θ
,
φ
)
\Psi(r, \theta, \varphi)
Ψ(r,θ,φ)可以分解为径向和角向两部分的积,即
Ψ
(
r
,
θ
,
φ
)
=
R
(
r
)
Y
(
θ
,
φ
)
\Psi(r, \theta, \varphi) = R(r)Y(\theta, \varphi)
Ψ(r,θ,φ)=R(r)Y(θ,φ)
代入上式就有
1
R
d
d
r
(
r
2
d
R
d
r
)
+
1
Y
1
sin
θ
∂
∂
θ
(
sin
θ
∂
Y
∂
θ
)
+
1
Y
1
sin
2
θ
∂
2
Y
∂
φ
2
−
2
m
e
ℏ
2
[
V
(
r
)
−
E
]
r
2
=
0
\frac{1}{R}\frac{d}{dr}(r^2\frac{dR}{dr}) + \frac{1}{Y}\frac{1}{\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta\frac{\partial Y}{\partial \theta}) + \frac{1}{Y}\frac{1}{\sin^2\theta}\frac{\partial^2 Y}{\partial\varphi^2} - \frac{2m_e}{\hbar^2}[V(r) - E]r^2= 0
R1drd(r2drdR)+Y1sinθ1∂θ∂(sinθ∂θ∂Y)+Y1sin2θ1∂φ2∂2Y−ℏ22me[V(r)−E]r2=0
于是有
1
R
d
d
r
(
r
2
d
R
d
r
)
−
2
m
e
ℏ
2
[
V
(
r
)
−
E
]
r
2
=
−
1
Y
[
1
sin
θ
∂
∂
θ
(
sin
θ
∂
Y
∂
θ
)
+
1
sin
2
θ
∂
2
Y
∂
φ
2
]
\frac{1}{R}\frac{d}{dr}(r^2\frac{dR}{dr}) - \frac{2m_e}{\hbar^2}[V(r) - E]r^2 = -\frac{1}{Y}[\frac{1}{\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta\frac{\partial Y}{\partial \theta}) + \frac{1}{\sin^2\theta}\frac{\partial^2 Y}{\partial\varphi^2}]
R1drd(r2drdR)−ℏ22me[V(r)−E]r2=−Y1[sinθ1∂θ∂(sinθ∂θ∂Y)+sin2θ1∂φ2∂2Y]
记此值为
β
\beta
β,就有
{
d
2
R
d
r
2
+
2
r
d
R
d
r
+
2
m
e
ℏ
2
[
E
−
V
(
r
)
−
ℏ
2
2
m
e
β
r
2
]
R
=
0
1
sin
θ
∂
∂
θ
(
sin
θ
∂
Y
∂
θ
)
+
1
sin
2
θ
∂
2
Y
∂
φ
2
=
−
β
Y
\left\{\begin{aligned} & \frac{d^2R}{dr^2} + \frac{2}{r}\frac{dR}{dr} + \frac{2m_e}{\hbar^2}[E - V(r) - \frac{\hbar^2}{2m_e}\frac{\beta}{r^2}]R = 0 \\ & \frac{1}{\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta\frac{\partial Y}{\partial \theta}) + \frac{1}{\sin^2\theta}\frac{\partial^2 Y}{\partial\varphi^2} = -\beta Y \end{aligned}\right .
⎩⎪⎪⎨⎪⎪⎧dr2d2R+r2drdR+ℏ22me[E−V(r)−2meℏ2r2β]R=0sinθ1∂θ∂(sinθ∂θ∂Y)+sin2θ1∂φ2∂2Y=−βY
如果进一步假定
Y
(
θ
,
φ
)
=
Θ
(
θ
)
Φ
(
φ
)
Y(\theta, \varphi) = \Theta(\theta)\Phi(\varphi)
Y(θ,φ)=Θ(θ)Φ(φ),上式可以继续分解为
1
Θ
sin
θ
d
d
θ
(
sin
θ
d
Θ
d
θ
)
+
β
sin
2
θ
=
−
1
Φ
d
2
Φ
d
φ
2
\frac{1}{\Theta}\sin\theta\frac{d}{d\theta}(\sin\theta\frac{d\Theta}{d\theta}) +\beta\sin^2\theta = -\frac{1}{\Phi}\frac{d^2\Phi}{d\varphi^2}
Θ1sinθdθd(sinθdθdΘ)+βsin2θ=−Φ1dφ2d2Φ
记此值为
α
\alpha
α,就有
{
sin
θ
d
d
θ
(
sin
θ
d
Θ
d
θ
)
+
[
β
sin
2
θ
−
α
]
Θ
=
0
d
2
Φ
d
φ
2
+
α
Φ
=
0
\left\{\begin{aligned} & \sin\theta\frac{d}{d\theta}(\sin\theta\frac{d\Theta}{d\theta}) + [\beta\sin^2\theta - \alpha]\Theta = 0 \\ & \frac{d^2\Phi}{d\varphi^2} + \alpha\Phi = 0 \end{aligned}\right .
⎩⎪⎪⎨⎪⎪⎧sinθdθd(sinθdθdΘ)+[βsin2θ−α]Θ=0dφ2d2Φ+αΦ=0
至此,我们将原偏微分方程拆分为了三个常微分方程。
Φ \Phi Φ的解
Φ
\Phi
Φ的特征解的为
Φ
=
c
e
i
α
φ
\Phi = ce^{i\sqrt\alpha\varphi}
Φ=ceiαφ
根据
Φ
\Phi
Φ的周期性条件
Φ
(
0
)
=
Φ
(
2
π
)
\Phi(0) = \Phi(2\pi)
Φ(0)=Φ(2π),我们有
α
=
m
\sqrt\alpha = m
α=m,其中
m
∈
Z
m \in \Z
m∈Z称为磁量子数。
另外,根据归一化条件需要有
∫
0
2
π
∣
Φ
(
φ
)
∣
2
d
φ
=
∫
0
2
π
c
2
d
φ
=
1
\int_0^{2\pi}|\Phi(\varphi)|^2d\varphi = \int_0^{2\pi}c^2d\varphi = 1
∫02π∣Φ(φ)∣2dφ=∫02πc2dφ=1
所以
c
=
1
2
π
c = \frac{1}{\sqrt{2\pi}}
c=2π1,于是
Φ
=
1
2
π
e
i
m
φ
\Phi = \frac{1}{\sqrt{2\pi}}e^{im\varphi}
Φ=2π1eimφ
Θ \Theta Θ的解
现在关于
Θ
\Theta
Θ的方程可以写为
sin
θ
d
d
θ
(
sin
θ
d
Θ
d
θ
)
+
[
β
sin
2
θ
−
m
2
]
Θ
=
0
\sin\theta\frac{d}{d\theta}(\sin\theta\frac{d\Theta}{d\theta}) + [\beta\sin^2\theta - m^2]\Theta = 0
sinθdθd(sinθdθdΘ)+[βsin2θ−m2]Θ=0
令
w
=
cos
θ
w = \cos\theta
w=cosθ,则
d
d
θ
=
−
sin
θ
d
d
w
\frac{d}{d\theta} = -\sin\theta\frac{d}{dw}
dθd=−sinθdwd,记
Θ
(
θ
)
=
P
(
w
)
\Theta(\theta) = P(w)
Θ(θ)=P(w),代入上式得
d
d
w
[
(
1
−
w
2
)
d
P
d
w
]
+
(
β
−
m
2
1
−
w
2
)
P
=
0
\frac{d}{dw}[(1 - w^2)\frac{dP}{dw}] + (\beta - \frac{m^2}{1 - w^2})P = 0
dwd[(1−w2)dwdP]+(β−1−w2m2)P=0
这被称为关联勒让德方程。
当
m
=
0
m = 0
m=0时,上式简化为
(
1
−
w
2
)
d
2
P
d
w
2
−
2
w
d
P
d
w
+
β
P
=
0
(1 - w^2)\frac{d^2P}{dw^2} - 2w\frac{dP}{dw} + \beta P = 0
(1−w2)dw2d2P−2wdwdP+βP=0
这被称为勒让德方程。
让我们考虑该方程的级数解,为此,我们设
P
(
w
)
=
∑
l
=
0
∞
a
l
w
l
P(w) = \sum_{l = 0}^\infty a_lw^l
P(w)=∑l=0∞alwl,其中
l
∈
N
l \in \N
l∈N称为角量子数。代入上式得
(
1
−
w
2
)
∑
l
=
0
∞
l
(
l
−
1
)
a
l
w
l
−
2
−
2
w
∑
l
=
0
∞
l
a
l
w
l
−
1
+
β
∑
l
=
0
∞
a
l
w
l
=
0
(1 - w^2)\sum_{l = 0}^\infty l(l - 1)a_lw^{l - 2} -2w\sum_{l = 0}^\infty la_lw^{l - 1} + \beta\sum_{l = 0}^\infty a_lw^l = 0
(1−w2)l=0∑∞l(l−1)alwl−2−2wl=0∑∞lalwl−1+βl=0∑∞alwl=0
整理得
∑
l
=
0
∞
[
(
l
+
2
)
(
l
+
1
)
a
l
+
2
−
(
l
2
+
l
−
β
)
a
l
]
w
l
=
0
\sum_{l = 0}^\infty[(l + 2)(l + 1)a_{l + 2} - (l^2 + l - \beta)a_l]w^l = 0
l=0∑∞[(l+2)(l+1)al+2−(l2+l−β)al]wl=0
这就要求
(
l
+
2
)
(
l
+
1
)
a
l
+
2
=
(
l
2
+
l
−
β
)
a
l
(l + 2)(l + 1)a_{l + 2} = (l^2 + l - \beta)a_l
(l+2)(l+1)al+2=(l2+l−β)al
于是
a
2
=
−
β
2
a
0
,
a
4
=
6
−
β
12
a
2
,
a
6
=
20
−
β
30
a
4
,
⋯
a
3
=
2
−
β
6
a
1
,
a
5
=
12
−
β
20
a
3
,
a
7
=
20
−
β
42
a
5
,
⋯
\begin{aligned} & a_2 = \frac{-\beta}{2}a_0, ~ a_4 = \frac{6 - \beta}{12}a_2, ~ a_6 = \frac{20 - \beta}{30}a_4, ~ \cdots \\ & a_3 = \frac{2 - \beta}{6}a_1, ~ a_5 = \frac{12 - \beta}{20}a_3, ~ a_7 = \frac{20 - \beta}{42}a_5, ~ \cdots \end{aligned}
a2=2−βa0, a4=126−βa2, a6=3020−βa4, ⋯a3=62−βa1, a5=2012−βa3, a7=4220−βa5, ⋯
代入
P
P
P的表达式得
P
(
w
)
=
a
0
(
1
+
−
β
2
w
2
+
6
−
β
12
−
β
2
w
4
+
20
−
β
30
6
−
β
12
−
β
2
w
6
+
⋯
)
+
a
1
(
w
+
2
−
β
6
w
3
+
12
−
β
20
2
−
β
6
w
5
+
20
−
β
42
12
−
β
20
2
−
β
6
w
7
+
⋯
)
\begin {aligned} P(w) = & a_0(1 + \frac{-\beta}{2}w^2 + \frac{6 - \beta}{12}\frac{-\beta}{2}w^4 + \frac{20 - \beta}{30}\frac{6 - \beta}{12}\frac{-\beta}{2}w^6 + \cdots) + \\ & a_1(w + \frac{2 - \beta}{6}w^3 + \frac{12 - \beta}{20}\frac{2 - \beta}{6}w^5 + \frac{20 - \beta}{42}\frac{12 - \beta}{20}\frac{2 - \beta}{6}w^7 + \cdots) \end{aligned}
P(w)=a0(1+2−βw2+126−β2−βw4+3020−β126−β2−βw6+⋯)+a1(w+62−βw3+2012−β62−βw5+4220−β2012−β62−βw7+⋯)
为使多项式
P
(
w
)
P(w)
P(w)收敛,须有
lim
l
→
∞
a
l
+
2
a
l
w
2
=
lim
l
→
∞
l
2
+
l
−
β
(
l
+
2
)
(
l
+
1
)
w
2
<
1
\lim_{l \to \infty}\frac{a_{l + 2}}{a_l}w^2 = \lim_{l \to \infty}\frac{l^2 + l - \beta}{(l + 2)(l + 1)}w^2 < 1
l→∞limalal+2w2=l→∞lim(l+2)(l+1)l2+l−βw2<1
对所有
w
w
w成立。但
w
∈
[
−
1
,
1
]
w \in [-1, 1]
w∈[−1,1],因此
β
=
l
(
l
+
1
)
\beta = l(l + 1)
β=l(l+1),且
a
0
a
1
=
0
a_0a_1 = 0
a0a1=0。我们还要求P(1) = 1,在此条件下可以解出所有的系数,此时称
P
P
P为勒让德多项式。显然不同的
l
l
l对应不同的多项式,前几个勒让德多项式为
P
0
=
1
P
1
=
x
P
2
=
1
2
(
3
x
2
−
1
)
P
3
=
1
2
(
5
x
3
−
3
x
)
P
4
=
1
8
(
35
x
4
−
30
x
2
+
3
)
P
5
=
1
8
(
63
x
5
−
70
x
3
+
15
)
P
6
=
1
16
(
231
x
6
−
315
x
4
+
105
x
2
−
5
)
⋯
\begin {aligned} P_0 &= 1 \\ P_1 &= x \\ P_2 &= \frac{1}{2}(3x^2 - 1) \\ P_3 &= \frac{1}{2}(5x^3 - 3x) \\ P_4 &= \frac{1}{8}(35x^4 - 30x^2 + 3) \\ P_5 &= \frac{1}{8}(63x^5 - 70x^3 + 15) \\ P_6 &= \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5) \\ \cdots \end{aligned}
P0P1P2P3P4P5P6⋯=1=x=21(3x2−1)=21(5x3−3x)=81(35x4−30x2+3)=81(63x5−70x3+15)=161(231x6−315x4+105x2−5)
其通项公式可以表示为
P
l
(
x
)
=
1
2
l
l
!
d
l
d
x
l
(
x
2
−
1
)
l
P_l(x) = \frac{1}{2^ll!}\frac{d^l}{dx^l}(x^2 - 1)^l
Pl(x)=2ll!1dxldl(x2−1)l
类似地,当
m
≠
0
m \neq 0
m=0时的解称为关联勒让德多项式,当
m
>
0
m > 0
m>0时,其定义为
P
l
m
(
x
)
=
(
−
1
)
m
(
1
−
x
2
)
m
2
d
m
d
x
m
P
l
(
x
)
P
l
−
m
(
x
)
=
(
−
1
)
m
(
l
−
m
)
!
(
l
+
m
)
!
P
l
m
\begin {aligned} P_l^m(x) &= (-1)^m(1 - x^2)^\frac{m}{2}\frac{d^m}{dx^m}P_l(x) \\ P_l^{-m}(x) &= (-1)^m\frac{(l - m)!}{(l + m)!}P_l^m \end{aligned}
Plm(x)Pl−m(x)=(−1)m(1−x2)2mdxmdmPl(x)=(−1)m(l+m)!(l−m)!Plm
容易看出,
P
l
=
P
l
0
P_l = P_l^0
Pl=Pl0,且
∣
m
∣
≤
l
|m| \le l
∣m∣≤l。此外,
∫
0
π
∣
P
l
m
(
cos
θ
)
∣
2
sin
θ
d
θ
=
∫
−
1
1
∣
P
l
m
(
x
)
∣
2
d
x
=
2
2
l
+
1
(
l
+
m
)
!
(
l
−
m
)
!
\int_{0}^{\pi}|P_l^m(\cos\theta)|^2\sin\theta d\theta = \int_{-1}^1|P_l^m(x)|^2dx = \frac{2}{2l + 1}\frac{(l + m)!}{(l - m)!}
∫0π∣Plm(cosθ)∣2sinθdθ=∫−11∣Plm(x)∣2dx=2l+12(l−m)!(l+m)!
故其归一化系数为
2
l
+
1
2
(
l
−
m
)
!
(
l
+
m
)
!
\sqrt{\frac{2l + 1}{2}\frac{(l - m)!}{(l + m)!}}
22l+1(l+m)!(l−m)!,
通常将
Θ
\Theta
Θ的解和
Φ
\Phi
Φ的解合并起来,记为
Y
l
m
(
θ
,
φ
)
=
2
l
+
1
4
π
(
l
−
m
)
!
(
l
+
m
)
!
P
l
m
(
cos
θ
)
e
i
m
φ
Y_l^m(\theta, \varphi) = \sqrt{\frac{2l + 1}{4\pi}\frac{(l - m)!}{(l + m)!}}P_l^m(\cos\theta)e^{im\varphi}
Ylm(θ,φ)=4π2l+1(l+m)!(l−m)!Plm(cosθ)eimφ
该函数称为球谐函数。
R R R的解
将
V
(
r
)
=
−
e
2
4
π
ϵ
0
r
V(r) = -\frac{e^2}{4\pi\epsilon_0r}
V(r)=−4πϵ0re2及
β
=
l
(
l
+
1
)
\beta = l(l + 1)
β=l(l+1)代入原式,得
d
2
R
d
r
2
+
2
r
d
R
d
r
+
[
2
m
e
ℏ
2
(
E
+
e
2
4
π
ϵ
0
r
)
−
l
(
l
+
1
)
r
2
]
R
=
0
\frac{d^2R}{dr^2} + \frac{2}{r}\frac{dR}{dr} + [\frac{2m_e}{\hbar^2}(E + \frac{e^2}{4\pi\epsilon_0r}) - \frac{l(l + 1)}{r^2}]R = 0
dr2d2R+r2drdR+[ℏ22me(E+4πϵ0re2)−r2l(l+1)]R=0
当
r
→
∞
r \to \infty
r→∞时,上述方程简化为
d
2
R
d
r
2
+
2
m
e
ℏ
2
E
R
=
0
\frac{d^2R}{dr^2} + \frac{2m_e}{\hbar^2}ER = 0
dr2d2R+ℏ22meER=0
注意到
E
≤
0
E \leq 0
E≤0(等号在无穷远处取得),可写出该方程的解为
R
(
r
)
=
A
e
−
2
m
e
E
ℏ
r
+
B
e
−
−
2
m
e
E
ℏ
r
R(r) = Ae^{\frac{\sqrt{-2m_eE}}{\hbar}r} + Be^{-\frac{\sqrt{-2m_eE}}{\hbar}r}
R(r)=Aeℏ−2meEr+Be−ℏ−2meEr
这里须令
A
=
0
A = 0
A=0以使方程不至发散,因此
R
(
r
)
=
B
e
−
−
2
m
e
E
ℏ
r
R(r) = Be^{-\frac{\sqrt{-2m_eE}}{\hbar}r}
R(r)=Be−ℏ−2meEr
现在我们令
ρ
=
2
r
ℏ
−
2
m
e
E
\rho = \frac{2r}{\hbar}\sqrt{-2m_eE}
ρ=ℏ2r−2meE,并猜测
R
(
r
)
R(r)
R(r)的形式为
R
(
r
)
=
F
(
ρ
)
e
−
ρ
2
R(r) = F(\rho)e^{-\frac{\rho}{2}}
R(r)=F(ρ)e−2ρ,代入原方程就得到
d
2
F
d
ρ
2
+
(
2
ρ
−
1
)
d
F
d
ρ
+
[
n
−
1
ρ
−
l
(
l
+
1
)
ρ
2
]
F
=
0
\frac{d^2F}{d\rho^2} + (\frac{2}{\rho} - 1)\frac{dF}{d\rho} + [\frac{n - 1}{\rho} - \frac{l(l + 1)}{\rho^2}]F = 0
dρ2d2F+(ρ2−1)dρdF+[ρn−1−ρ2l(l+1)]F=0
其中
n
=
1
4
π
ϵ
0
m
e
e
2
ℏ
−
2
m
e
E
n = \frac{1}{4\pi\epsilon_0}\frac{m_ee^2}{\hbar\sqrt{-2m_eE}}
n=4πϵ01ℏ−2meEmee2
我们可假设
F
(
ρ
)
=
ρ
s
L
(
ρ
)
F(\rho) = \rho^sL(\rho)
F(ρ)=ρsL(ρ),通过取
s
≥
0
s \ge 0
s≥0为合适的值使上式不至在
ρ
→
0
\rho \to 0
ρ→0时发散。代入得
ρ
2
d
2
L
d
ρ
2
+
[
(
2
s
+
2
)
ρ
−
ρ
2
]
d
L
d
ρ
+
[
s
(
s
−
1
)
+
2
s
+
(
n
−
1
−
s
)
ρ
−
l
(
l
+
1
)
]
L
=
0
\rho^2\frac{d^2L}{d\rho^2} + [(2s + 2)\rho - \rho^2]\frac{dL}{d\rho} + [s(s - 1) + 2s + (n - 1 - s)\rho - l(l +1) ]L = 0
ρ2dρ2d2L+[(2s+2)ρ−ρ2]dρdL+[s(s−1)+2s+(n−1−s)ρ−l(l+1)]L=0
当
ρ
→
0
\rho \to 0
ρ→0时,须有
s
(
s
−
1
)
+
2
s
−
l
(
l
+
1
)
=
0
s(s - 1) + 2s - l(l + 1) = 0
s(s−1)+2s−l(l+1)=0。解得
s
=
l
s= l
s=l,代回原式有
ρ
d
2
L
d
ρ
2
+
(
2
l
+
2
−
ρ
)
d
L
d
ρ
+
(
n
−
1
−
l
)
L
=
0
\rho\frac{d^2L}{d\rho^2} + (2l + 2 - \rho)\frac{dL}{d\rho} + (n - 1 - l)L = 0
ρdρ2d2L+(2l+2−ρ)dρdL+(n−1−l)L=0
为求其级数解,我们设
L
(
ρ
)
=
∑
k
=
0
∞
a
k
ρ
k
L(\rho) = \sum_{k = 0}^{\infty}a_k\rho^k
L(ρ)=∑k=0∞akρk,代入上式就有
∑
k
=
0
∞
[
a
k
+
1
(
k
+
1
)
(
k
+
2
l
+
2
)
+
a
k
(
n
−
1
−
l
−
k
)
]
ρ
k
=
0
\sum_{k = 0}^{\infty}[a_{k + 1}(k + 1)(k + 2l + 2) + a_k(n - 1 - l - k)]\rho^k = 0
k=0∑∞[ak+1(k+1)(k+2l+2)+ak(n−1−l−k)]ρk=0
因此
a
k
+
1
a
k
=
1
+
l
+
k
−
n
(
k
+
1
)
(
k
+
2
l
+
2
)
\frac{a_{k + 1}}{a_k} = \frac{1 + l + k - n}{(k + 1)(k + 2l + 2)}
akak+1=(k+1)(k+2l+2)1+l+k−n
注意到
k
→
∞
k \to \infty
k→∞时
a
k
+
1
a
k
=
1
k
\frac{a_{k + 1}}{a_k} = \frac{1}{k}
akak+1=k1,此时
L
∼
e
ρ
L \sim e^\rho
L∼eρ,而
R
∼
ρ
s
e
ρ
2
R \sim \rho^se^\frac{\rho}{2}
R∼ρse2ρ,当
r
→
∞
r \to \infty
r→∞时发散。所以必须有
n
=
k
+
l
+
1
n = k + l + 1
n=k+l+1
我们记
n
r
=
k
∈
N
n_r = k \in \N
nr=k∈N称为径向量子数,
n
∈
N
+
n \in \N^+
n∈N+称为主量子数,
n
≥
l
+
1
n \ge l + 1
n≥l+1。由此又可得到如下关系
E
=
−
m
e
e
4
2
(
4
π
ϵ
0
ℏ
)
2
1
n
2
=
−
m
e
e
4
8
h
2
ϵ
0
2
1
n
2
E = -\frac{m_ee^4}{2(4\pi\epsilon_0\hbar)^2}\frac{1}{n^2} = -\frac{m_ee^4}{8h^2\epsilon_0^2}\frac{1}{n^2}
E=−2(4πϵ0ℏ)2mee4n21=−8h2ϵ02mee4n21
这就是玻尔能级公式,而
ρ
=
m
e
e
2
4
π
ϵ
0
ℏ
2
2
r
n
=
2
r
a
0
n
\rho = \frac{m_ee^2}{4\pi\epsilon_0\hbar^2}\frac{2r}{n} = \frac{2r}{a_0n}
ρ=4πϵ0ℏ2mee2n2r=a0n2r
其中
a
0
=
4
π
ϵ
0
ℏ
2
m
e
e
2
a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_ee^2}
a0=mee24πϵ0ℏ2
为氢原子的玻尔半径。
记
N
=
n
−
1
−
l
N = n - 1 - l
N=n−1−l,
a
=
2
l
+
1
a = 2l + 1
a=2l+1,就有
a
1
=
0
−
N
1
(
a
+
1
)
a
0
,
a
2
=
1
−
N
2
(
a
+
2
)
a
1
,
a
3
=
2
−
N
3
(
a
+
3
)
a
2
,
⋯
a_1 = \frac{0 - N}{1(a + 1)}a_0, ~ a_2 = \frac{1 - N}{2(a + 2)}a_1, ~ a_3 = \frac{2 - N}{3(a + 3)}a_2, ~ \cdots
a1=1(a+1)0−Na0, a2=2(a+2)1−Na1, a3=3(a+3)2−Na2, ⋯
于是
a
k
=
(
−
1
)
k
a
!
N
!
(
N
−
k
)
!
k
!
(
a
+
k
)
!
a
0
a_k = (-1)^k\frac{a!N!}{(N - k)!k!(a + k)!}a_0
ak=(−1)k(N−k)!k!(a+k)!a!N!a0
我们还要求
L
(
0
)
=
(
N
+
a
)
!
a
!
N
!
=
(
N
+
a
a
)
L(0) = \frac{(N + a)!}{a!N!} = \binom{N + a}{a}
L(0)=a!N!(N+a)!=(aN+a),于是就有
L
N
a
(
ρ
)
=
∑
k
=
0
N
(
−
1
)
k
(
N
+
a
)
!
(
N
−
k
)
!
k
!
(
a
+
k
)
!
ρ
k
=
∑
k
=
0
N
(
−
1
)
k
k
!
(
N
+
a
k
+
a
)
ρ
k
L_N^a(\rho) = \sum_{k = 0}^{N}(-1)^k\frac{(N + a)!}{(N - k)!k!(a + k)!}\rho^k = \sum_{k = 0}^{N}\frac{(-1)^k}{k!}\binom{N + a}{k + a}\rho^k
LNa(ρ)=k=0∑N(−1)k(N−k)!k!(a+k)!(N+a)!ρk=k=0∑Nk!(−1)k(k+aN+a)ρk
这被称为关联拉盖尔多项式。当
a
=
0
a = 0
a=0时,
L
N
=
L
N
0
L_N = L_N^0
LN=LN0又被称为拉盖尔多项式。于是方程的解就可以表示为
R
(
ρ
)
=
e
−
ρ
2
ρ
l
L
n
−
1
−
l
2
l
+
1
(
ρ
)
R(\rho) = e^{-\frac{\rho}{2}}\rho^lL_{n - 1 - l}^{2l + 1}(\rho)
R(ρ)=e−2ρρlLn−1−l2l+1(ρ)
关于
L
N
a
L_N^a
LNa的一个重要的积分是
∫
0
∞
e
−
x
x
a
+
1
[
L
N
a
(
x
)
]
2
d
x
=
(
2
N
+
a
+
1
)
(
N
+
a
)
!
N
!
\int_0^\infty e^{-x}x^{a + 1}[L_N^a(x)]^2dx = \frac{(2N + a + 1)(N + a)!}{N!}
∫0∞e−xxa+1[LNa(x)]2dx=N!(2N+a+1)(N+a)!
由此可知
∫
0
∞
R
2
(
ρ
)
r
2
d
r
=
(
a
0
n
2
)
3
∫
0
∞
e
−
ρ
ρ
2
l
+
2
[
L
n
−
1
−
l
2
l
+
1
(
ρ
)
]
2
d
ρ
=
(
a
0
n
2
)
3
2
n
(
n
+
l
)
!
(
n
−
1
−
l
)
!
\int_0^\infty R^2(\rho)r^2dr = (\frac{a_0n}{2})^3\int_0^\infty e^{-\rho}\rho^{2l + 2}[L_{n - 1 - l}^{2l + 1}(\rho)]^2d\rho = (\frac{a_0n}{2})^3\frac{2n(n + l)!}{(n - 1 - l)!}
∫0∞R2(ρ)r2dr=(2a0n)3∫0∞e−ρρ2l+2[Ln−1−l2l+1(ρ)]2dρ=(2a0n)3(n−1−l)!2n(n+l)!
于是其归一化系数为
(
2
a
0
n
)
3
(
n
−
1
−
l
)
!
2
n
(
n
+
l
)
!
\sqrt{(\frac{2}{a_0n})^3\frac{(n - 1 - l)!}{2n(n + l)!}}
(a0n2)32n(n+l)!(n−1−l)!.
小结
通过上述计算我们知道,氢原子的波函数可以表示为
Ψ
(
r
,
θ
,
φ
)
=
(
2
a
0
n
)
3
(
n
−
1
−
l
)
!
2
n
(
n
+
l
)
!
e
−
r
a
0
n
(
2
r
a
0
n
)
l
L
n
−
1
−
l
2
l
+
1
(
2
r
a
0
n
)
Y
l
m
(
θ
,
φ
)
\Psi(r, \theta, \varphi) = \sqrt{(\frac{2}{a_0n})^3\frac{(n - 1 - l)!}{2n(n + l)!}}e^{-\frac{r}{a_0n}}(\frac{2r}{a_0n})^lL_{n - 1 - l}^{2l + 1}(\frac{2r}{a_0n})Y_l^m(\theta, \varphi)
Ψ(r,θ,φ)=(a0n2)32n(n+l)!(n−1−l)!e−a0nr(a0n2r)lLn−1−l2l+1(a0n2r)Ylm(θ,φ)
其中
a
0
=
4
π
ϵ
0
ℏ
2
m
e
e
2
a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_ee^2}
a0=mee24πϵ0ℏ2为玻尔半径,
m
m
m为磁量子数,
l
l
l为角量子数,
n
n
n为主量子数,且满足
∣
m
∣
≤
l
<
n
|m| \le l < n
∣m∣≤l<n. 于是能级
E
n
E_n
En的简并度为
D
n
=
∑
l
=
0
n
−
1
(
2
l
+
1
)
=
n
2
D_n = \sum_{l = 0}^{n - 1}(2l + 1) = n^2
Dn=l=0∑n−1(2l+1)=n2
Ψ
(
r
,
θ
,
φ
)
\Psi(r, \theta, \varphi)
Ψ(r,θ,φ)还满足归一化条件
∫
0
∞
∫
0
π
∫
0
2
π
Ψ
2
(
r
,
θ
,
φ
)
r
2
sin
θ
d
φ
d
θ
d
r
=
1
\int_0^\infty\int_0^\pi\int_0^{2\pi}\Psi^2(r, \theta, \varphi)r^2\sin\theta d\varphi d\theta dr = 1
∫0∞∫0π∫02πΨ2(r,θ,φ)r2sinθdφdθdr=1文章来源:https://www.toymoban.com/news/detail-725890.html
我们可以求一下基态(
n
=
1
,
l
=
m
=
0
n = 1, l = m = 0
n=1,l=m=0)时的波函数,代入
Ψ
\Psi
Ψ的表达式就有
Ψ
100
=
1
π
a
0
3
e
−
r
a
0
\Psi_{100} = \sqrt\frac{1}{\pi a_0^3}e^{-\frac{r}{a_0}}
Ψ100=πa031e−a0r
于是电子出现在半径为
r
r
r的球壳附近的概率为
d
P
=
4
π
r
2
Ψ
100
2
d
r
dP = 4\pi r^2\Psi_{100}^2d r
dP=4πr2Ψ1002dr
其概率密度为
f
(
r
)
=
d
P
d
r
=
4
π
r
2
Ψ
100
2
=
4
r
2
a
0
3
e
−
2
r
a
0
f(r) = \frac{dP}{dr} = 4\pi r^2\Psi_{100}^2 = \frac{4r^2}{a_0^3}e^{-\frac{2r}{a_0}}
f(r)=drdP=4πr2Ψ1002=a034r2e−a02r
满足
f
(
0
)
=
0
f(0) = 0
f(0)=0,这说明电子出现在原子核附近的概率为零。我们还可以求得
f
(
r
)
f(r)
f(r)在
r
=
a
0
r = a_0
r=a0时取得最大值,这说明玻尔半径附近的球壳正是电子出现概率最大的地方。文章来源地址https://www.toymoban.com/news/detail-725890.html
到了这里,关于氢原子的薛定谔方程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!