TensorFlow入门(二十三、退化学习率)

这篇具有很好参考价值的文章主要介绍了TensorFlow入门(二十三、退化学习率)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

学习率

        学习率,控制着模型的学习进度。模型训练过程中,如果学习率的值设置得比较大,训练速度会提升,但训练结果的精度不够,损失值容易爆炸;如果学习率的值设置得比较小,精度得到了提升,但训练过程会耗费太多的时间,收敛速度慢,同时也容易出现过拟合的情况。

退化学习率

        退化学习率又叫学习率衰减或学习率更新。更新学习率是希望训练过程中,在精度和速度之间找到一个平衡,兼得学习率大核学习率小的优点。即当训练刚开始时使用大的学习率加快速度,训练到一定程度后使用小的学习率来提高精度。

TensorFlow中常用的退化学习率方法

        ①指数衰减方法

                指数衰减是较为常用的衰减方法,学习率是跟当前的训练轮次指数相关的。

                tf.train.exponential_decay(learning_rate,global_step,decay_steps,decay_rate,staircase = False,name = None)

                参数learning_rate为初始学习率;global_step为当前训练轮次,即epoch;decay_steps用于定义衰减周期,跟参数staircese配合,可以在decay_step个训练轮次内保持学习率不变;decay_rate为衰减率系数;staircase用于定义是阶梯型衰减,还是连续衰减,默认是False,即连续衰减(标准的指数型衰减)。

                指数衰减方法中学习率的具体计算公式如下:

                        decayed_learning_rate = learning_rate*decay_rate^(global_step/decay_steps)

                指数衰减方法中学习率的衰减轨迹如下图:

                        TensorFlow入门(二十三、退化学习率),TensorFlow入门,tensorflow,人工智能,python,深度学习

                        红色的是阶梯型指数衰减,在一定轮次内学习率保持一致

                        绿色的是标准的指数衰减,即连续型指数衰减

        ②自然指数衰减方法

                指数衰减的一种特殊情况,学习率也是跟当前的训练轮次指数相关,只不过是以e为底数。函数中的参数意义与指数衰减方法中的参数相同。

                tf.train.natural_exp_decay(learning_rate,global_step,decay_steps,decay_rate,staircase = False,name = None)

                自然指数衰减方法中的学习率的具体计算公式如下:

                        decayed_learning_rate = learning_rate*exp(-decay_rate*global_step)

                自然指数衰减方法中学习率的衰减轨迹如下图:

                        TensorFlow入门(二十三、退化学习率),TensorFlow入门,tensorflow,人工智能,python,深度学习

                        左下部分的两条曲线是自然指数衰减,右上部分的两条曲线是指数衰减。可以明显看到,自然指数衰减对学习率的衰减程度要远大于一般的指数衰减,它一般用于可以较快收敛的网络,或者是训练数据集比较大的场合。

        ③倒数衰减方法

                训练过程中,倒数衰减方法不固定最小学习率,迭代次数越多,学习率越小。学习率的大小跟训练次数有一定的反比关系。

               tf.train.inverse_time_decay(learning_rate,global_step,decay_steps,decay_rate,staircase = False,name = None)

                参数global_step为用于衰减计算的全局步数,decay_steps为衰减步数,decay_rate为衰减率,staircase用于定义是应用离散阶梯型衰减,还是连续衰减。

                倒数衰减方法中学习率的具体计算公式如下:

                        decayed_learning_rate = learning_rate/(1+decay_rate*global_step/decay_step)

                倒数衰减方法中学习率的衰减轨迹如下图:

                        TensorFlow入门(二十三、退化学习率),TensorFlow入门,tensorflow,人工智能,python,深度学习

                        绿色的是离散阶梯型衰减,红色的是连续型衰减

        ④分段常数衰减方法

                分段常数衰减可以针对不同任务设置不同的学习率,从而进行精细调参。

                tf.train.piecewise_constant(x,boundaries,values,name = None)

                参数x是标量,指的是global_step,即训练次数;boundaries为学习率参数应用区间列表,即迭代次数所在的区间;values为学习率列表,存放在不同区间该使用的学习率的值。需要注意 : values的长度比boundaries的长度多1,因为两个数可以制定出三个区间,有三个区间要用3个学习率。

                分段常数衰减方法中学习率的衰减轨迹如下图:

                        ​​​​​​​TensorFlow入门(二十三、退化学习率),TensorFlow入门,tensorflow,人工智能,python,深度学习

                        每个区间内,学习率的值是不一样的

        ⑤多项式衰减方法

                多项式衰减方法的原理为 : 定义一个初始的学习率和一个最低的学习率,然后按照设置的衰减规则,学习率从初始学习率逐渐降低到最低的学习率,并且可以定义学习率降低到最低的值之后,是一直保持使用这个最低的学习率,还是再升高到一定的值,然后再降低到最低的学习率,循环反复这个过程。

                tf.train.polynomial_decay(learning_rate,global_step,decay_steps,end_learning_rate = 0.0001,power = 1.0,cycle = False,name = None)

                参数global_step为当前训练轮次,即epoch;decay_steps为定义衰减周期;end_learning_rate是最小的学习率,默认值是0.0001;power是多项式的幂,默认值是1,即线性的。cycle用于定义学习率是否到达最低学习率后升高,然后再降低,默认False,保持最低的学习率。

                一般情况下多项式衰减方法中学习率的具体计算公式如下:

                        global_step = min(global_step,decay_steps)

                        decayed_learning_rate = (learning_rate - end_learning_rate) * (1 - global_step / decay_steps)^(power) + end_learning_rate

                如果定义cycle为True,学习率在到达最低学习率后反复升高降低,学习率计算公式如下:

                        decay_steps = decay_steps * ceil(global_step / decay_steps)

                        decayed_learning_rate = (learning_rate - end_learning_rate) * (1 - global_step / decay_steps)^(power) + end_learning_rate

                多项式衰减方法中学习率的衰减轨迹如下图:

                        TensorFlow入门(二十三、退化学习率),TensorFlow入门,tensorflow,人工智能,python,深度学习

                        红色的为cycle = False时的情况,下降后不再上升,保持不变;绿色的为cycle = True时的情况,下降后反复升降。

                多项式衰减中设置学习率反复升降的目的是为了防止神经网络后期训练的学习率过小,导致网络参数陷入某个局部,找不到最优解;设置学习率升高机制,有可能使网络找出局部最优解。

指数衰减示例代码如下:

import tensorflow.compat.v1 as tf
tf.compat.v1.disable_v2_behavior()

global_step = tf.Variable(0,trainable=False)
#定义初始学习率
initial_learning_rate = 0.1
#使用指数衰减方法
learning_rate = tf.train.exponential_decay(initial_learning_rate,global_step,decay_steps = 20,decay_rate = 0.8)

#定义一个操作,global_step每次加1后完成计步
opt = tf.train.GradientDescentOptimizer(learning_rate)
add_global = global_step.assign_add(1)

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(learning_rate))
    #循环20次,将每次的学习率打印出来
    for i in range(20):
        g,rate = sess.run([add_global,learning_rate])
        print(g,rate)

TensorFlow入门(二十三、退化学习率),TensorFlow入门,tensorflow,人工智能,python,深度学习文章来源地址https://www.toymoban.com/news/detail-725956.html

到了这里,关于TensorFlow入门(二十三、退化学习率)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Tensorflow入门(2)——深度学习框架Tesnsflow & 线程+队列+IO操作 & 文件读取案例

    Tensorflow入门(1)——深度学习框架Tesnsflow入门 环境配置 认识Tensorflow 在训练样本的时候,希望读入的训练样本时有序的 • tf.FIFOQueue 先进先出队列,按顺序出队列 • tf.RandomShuffleQueue 随机出队列 FIFOQueue(capacity, dtypes, name=‘fifo_queue’) 创建一个以先进先出的顺序对元素进行排

    2024年02月17日
    浏览(47)
  • TensorFlow和PyTorch各有哪些优缺点呢?入门学习该如何选择呢?

    TensorFlow和PyTorch是两个广泛应用于深度学习的开源框架,它们各自具有一些优点和缺点。下面是它们的主要特点: TensorFlow的优点: 高度灵活 :TensorFlow提供了更底层的操作和控制,可以对模型的细节进行更精确的调整和优化。 强大的部署能力 :TensorFlow提供了广泛的部署选项

    2024年02月16日
    浏览(62)
  • 3、TensorFlow教程--- 理解人工智能

    人工智能包括通过机器和特殊计算机系统模拟人类智能的过程。人工智能的示例包括学习、推理和自我校正。人工智能的应用包括语音识别、专家系统、图像识别和机器视觉。 机器学习是人工智能的一个分支,它处理可以学习任何新数据和数据模式的系统和算法。 让我们关

    2024年02月08日
    浏览(58)
  • 人工智能之Tensorflow技术特点及组件结构

    前言 Tensorflow的前身时谷歌的神经网络算法库DistBelief,被广泛应用于各类机器学习、深度学习算法的编程实现。Tensorflow具有实现代码简洁、编程范式灵活、分布式深度学习算法执行效率高、多语言API支持、CPU/GPU部署方便、良好的可扩展性、可移植性及在学术研究和产品研发

    2024年02月21日
    浏览(56)
  • 从零开始学习 Java:简单易懂的入门指南之Map集合(二十三)

    1.1Map集合概述和特点 Map集合概述 Map集合的特点 双列集合,一个键对应一个值 键不可以重复,值可以重复 Map集合的基本使用 1.2Map集合的基本功能 方法介绍 方法名 说明 V put(K key,V value) 添加元素 V remove(Object key) 根据键删除键值对元素 void clear() 移除所有的键值对元素 boolean con

    2024年02月09日
    浏览(50)
  • 人工智能TensorFlow MNIST手写数字识别——实战篇

    上期文章TensorFlow手写数字-训练篇,我们训练了我们的神经网络,本期使用上次训练的模型,来识别手写数字(本期构建TensorFlow神经网络代码为上期文章分享代码) http://scs.ryerson.ca/~aharley/vis/conv/ 0、插入第三方库 1、图片处理函数

    2024年02月15日
    浏览(59)
  • 【Python/人工智能】TensorFlow 框架原理及使用教程

    TensorFlow 是一款由 Google 开源的人工智能框架,是目前应用最广泛的深度学习框架之一。它可以在各种硬件平台上运行,包括单个 CPU、CPU 集群、GPU,甚至是分布式环境下的 CPU 和 GPU 组合。 除了深度学习领域,TensorFlow 还支持其他机器学习算法和模型,如 决策树 、 SVM 、 k-m

    2024年04月28日
    浏览(48)
  • 人工智能:Pytorch,TensorFlow,MXNET,PaddlePaddle 啥区别?

    学习人工智能的时候碰到各种深度神经网络框架:pytorch,TensorFlow,MXNET,PaddlePaddle,他们有什么区别? PyTorch、TensorFlow、MXNet和PaddlePaddle都是深度学习领域的开源框架,它们各自具有不同的特点和优势。以下是它们之间的主要区别: PyTorch是一个开源的Python机器学习库,它基

    2024年04月16日
    浏览(69)
  • 人工智能TensorFlow PyTorch物体分类和目标检测合集【持续更新】

    1. 基于TensorFlow2.3.0的花卉识别 基于TensorFlow2.3.0的花卉识别Android APP设计_基于安卓的花卉识别_lilihewo的博客-CSDN博客 2. 基于TensorFlow2.3.0的垃圾分类 基于TensorFlow2.3.0的垃圾分类Android APP设计_def model_load(img_shape=(224, 224, 3)_lilihewo的博客-CSDN博客   3. 基于TensorFlow2.3.0的果蔬识别系统的

    2024年02月09日
    浏览(62)
  • 【人工智能】Transformers 快速上手: 为 Jax、PyTorch 和 TensorFlow 打造的先进的自然语言处理

    为 Jax、PyTorch 和 TensorFlow 打造的先进的自然语言处理 🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。 🤗 Transformers 提供了便于快速下载和使用的API,让你可以把

    2024年02月08日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包