Distilling the Knowledge in a Neural Network学习笔记

这篇具有很好参考价值的文章主要介绍了Distilling the Knowledge in a Neural Network学习笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.主要内容是什么:

这篇论文介绍了一种有效的知识迁移方法——蒸馏,可以将大型模型中的知识转移到小型模型中,从而提高小型模型的性能。这种方法在实际应用中具有广泛的潜力,并且可以应用于各种不同的任务和领域。

论文中首先介绍了蒸馏的基本原理。大型模型通常通过softmax输出层产生类别概率,而蒸馏则通过提高softmax的温度来产生更软化的概率分布。在蒸馏过程中,使用大型模型生成的高温软目标分布来训练小型模型,以实现知识的迁移。

2.怎么实现的?

具体实现方式是,

3.硬标签和软目标?

硬标签和软目标是知识蒸馏方法中的两种不同的目标函数。

硬标签是指使用真实的标签作为目标进行训练。在传统的监督学习中,通常使用硬标签来训练模型,即将模型的输出与真实标签进行比较,通过最小化它们之间的差异来优化模型。

软目标是指使用大型模型生成的概率分布作为目标进行训练。

在知识蒸馏中,大型模型生成的概率分布被认为是一种"软"的目标,因为它们比硬标签更平滑,包含了更多的信息。小型模型通过最小化其输出与软目标之间的差异来训练。 在论文中,作者发现将硬标签和软目标结合起来训练蒸馏模型可以取得更好的效果。他们提出了一种加权平均的目标函数,其中第一个目标函数是使用软目标进行的交叉熵损失,第二个目标函数是使用硬标签进行的交叉熵损失。通过调整这两个目标函数的权重,可以在保留软目标的信息的同时,让模型更好地学习硬标签的知识。 在使用硬标签和软目标进行训练时,需要注意将软目标的梯度乘以温度的平方,以保持硬目标和软目标的相对贡献大致不变。这是因为软目标的梯度与温度的平方成反比,所以在使用硬目标和软目标时需要进行调整,以保持相对的平衡。

总的来说,硬标签和软目标是知识蒸馏方法中两种不同的目标函数,通过结合它们可以在训练蒸馏模型时获得更好的效果。

4.为什么不把软目标当做唯一loss?

软目标是大模型的输出概率分布传递给小模型来获得的,这些概率分布可能包含了大模型的对于小模型来说,额外的知识和不确定性。

而且,软目标并不是完全准确的标签,因此仅依赖软目标进行训练可能会导致模型过度拟合软目标的噪声。

所以,通常会将软目标与真实标签结合起来,使用两个不同的目标函数进行训练。

第一个目标函数是使用软目标计算的交叉熵损失

第二个目标函数是使用真实标签计算的交叉熵损失。

这样可以在保留软目标的知识的同时,确保模型也能够学习到正确的标签信息。

另外,软目标通常是通过使用较高的温度参数来生成的,这可以使概率分布更加平滑。

但在训练过程中,为了使得软目标和硬目标的相对贡献保持大致不变,需要将软目标的梯度乘以温度的平方。这样可以确保在尝试不同的温度参数时,硬目标和软目标的相对贡献保持一致。

5.软目标具体是用的大模型的哪一层呢?

软目标是使用大模型的softmax层输出的概率分布。

软目标是通过将大模型的logits(输入softmax的值)通过softmax函数计算得到的概率分布。这个概率分布可以被视为大模型对每个类别的预测概率。

6.在做蒸馏的时候,需要大模型和小模型的模型输出头保持结构一致吗

是的。大模型和小模型的模型输出头(output head)需要保持结构一致。

两个模型的输出头应该具有相同的类别数目,并且在相同的类别顺序上产生预测结果。这是因为在蒸馏过程中,我们希望小模型能够学习大模型的知识,包括类别之间的关系和概率分布。如果大模型和小模型的输出头结构不一致,那么在计算损失函数和梯度时会出现不匹配的情况,导致蒸馏效果不佳。因此,在进行蒸馏时,需要确保大模型和小模型的输出头具有相同的结构。文章来源地址https://www.toymoban.com/news/detail-726253.html

到了这里,关于Distilling the Knowledge in a Neural Network学习笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • K8s in Action 阅读笔记——【14】Securing cluster nodes and the network

    迄今为止,创建了 Pod 而不考虑它们允许消耗多少 CPU 和内存。但是,正如将在本章中看到的那样,设置 Pod 预期消耗和允许消耗的最大数量是任何 Pod 定义的重要部分。设置这两组参数可以确保 Pod 只占用 Kubernetes 集群提供的资源中的份额,并且还影响 Pod 在集群中的调度方式

    2024年02月08日
    浏览(45)
  • Building A Neural Network From Scratch in Python

    作者:禅与计算机程序设计艺术 人工神经网络(Artificial Neural Networks, ANN)是一种模仿人脑神经元网络的计算模型。它由输入层、输出层、隐藏层组成,其中每层包括多个神经元节点。ANN可以学习和识别复杂的数据模式。本文将使用Python语言,基于全连接网络结构,构建一个

    2024年02月07日
    浏览(33)
  • PyTorch翻译官网教程5-BUILD THE NEURAL NETWORK

    Build the Neural Network — PyTorch Tutorials 2.0.1+cu117 documentation 神经网络由操作数据的层/模块组成,torch.nn 命名空间提供了构建自己的神经网络所需的所有构建块。PyTorch中的每个模块都是nn.Module 的子类。神经网络本身就是一个由其他模块(层)组成的模型.这种嵌套结构允许轻松地构建

    2024年02月12日
    浏览(47)
  • 【论文笔记】KDD2019 | KGAT: Knowledge Graph Attention Network for Recommendation

    为了更好的推荐,不仅要对user-item交互进行建模,还要将关系信息考虑进来 传统方法因子分解机将每个交互都当作一个独立的实例,但是忽略了item之间的关系(eg:一部电影的导演也是另一部电影的演员) 高阶关系:用一个/多个链接属性连接两个item KG+user-item graph+high orde

    2024年02月16日
    浏览(38)
  • 【知识蒸馏】知识蒸馏(Knowledge Distillation)技术详解

    参考论文:Knowledge Distillation: A Survey        ​ 近年来,深度学习在学术界和工业界取得了巨大的成功,根本原因在于其可拓展性和编码大规模数据的能力。但是, 深度学习的主要挑战在于,受限制于资源容量,深度神经模型很难部署在资源受限制的设备上。如嵌入式设备

    2024年01月23日
    浏览(38)
  • 知识蒸馏(Knowledge Distillation)

     论文:[1503.02531] Distilling the Knowledge in a Neural Network (arxiv.org) 知识蒸馏是一种模型压缩方法,是一种基于“教师-学生网络思想”的训练方式,由于其简单,有效,并且已经在工业界被广泛应用。 知识蒸馏使用的是Teacher—Student模型,其中teacher是“知识”的输出者,student是“

    2024年02月06日
    浏览(41)
  • 知识蒸馏(Knowledge Distillation)

    知识蒸馏的概念由Hinton在Distilling the Knowledge in a Neural Network中提出,目的是把 一个大模型或者多个模型集成 学到的知识迁移到另一个轻量级模型上。 Knowledge Distillation,简称KD,顾名思义,就是将已经训练好的模型包含的知识(Knowledge),蒸馏(Distill)提取到另一个模型里面去。

    2024年02月03日
    浏览(30)
  • 深度学习4. 循环神经网络 – Recurrent Neural Network | RNN

    目录 循环神经网络 – Recurrent Neural Network | RNN 为什么需要 RNN ?独特价值是什么? RNN 的基本原理 RNN 的优化算法 RNN 到 LSTM – 长短期记忆网络 从 LSTM 到 GRU RNN 的应用和使用场景 总结 百度百科+维基百科 卷积神经网络和普通的算法大部分都是输入和输出的一一对应,也就是一

    2024年02月11日
    浏览(41)
  • 论文笔记:Traffic Flow Prediction via Spatial Temporal Graph Neural Network

    WWW 2020 图神经网络+图注意力——空间依赖关系 RNN+Transformer——短期长期依赖关系 缺点:运用RNN于较长序列仍然会带来误差积累,并且RNN模型的运算效率并不高   

    2024年02月12日
    浏览(44)
  • 一文搞懂【知识蒸馏】【Knowledge Distillation】算法原理

    知识蒸馏就是把一个大的教师模型的知识萃取出来,把他浓缩到一个小的学生模型,可以理解为一个大的教师神经网络把他的知识教给小的学生网络,这里有一个知识的迁移过程,从教师网络迁移到了学生网络身上,教师网络一般是比较臃肿,所以教师网络把知识教给学生网

    2024年02月04日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包