HashMap源码
1.看源码之前需要了解的一些内容
Node<K,V>[] table 哈希表结构中数组的名字
DEFAULT_INITIAL_CAPACITY: 数组默认长度16
DEFAULT_LOAD_FACTOR: 默认加载因子0.75
HashMap里面每一个对象包含以下内容:
1.1 链表中的键值对对象
包含:
int hash; //键的哈希值
final K key; //键
V value; //值
Node<K,V> next; //下一个节点的地址值
1.2 红黑树中的键值对对象
包含:
int hash; //键的哈希值
final K key; //键
V value; //值
TreeNode<K,V> parent; //父节点的地址值
TreeNode<K,V> left; //左子节点的地址值
TreeNode<K,V> right; //右子节点的地址值
boolean red; //节点的颜色
2.添加元素
HashMap<String,Integer> hm = new HashMap<>();
hm.put("aaa" , 111);
hm.put("bbb" , 222);
hm.put("ccc" , 333);
hm.put("ddd" , 444);
hm.put("eee" , 555);
添加元素的时候至少考虑三种情况:
2.1数组位置为null
2.2数组位置不为null,键不重复,挂在下面形成链表或者红黑树
2.3数组位置不为null,键重复,元素覆盖
//参数一:键
//参数二:值
//返回值:被覆盖元素的值,如果没有覆盖,返回null
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
//利用键计算出对应的哈希值,再把哈希值进行一些额外的处理
//简单理解:返回值就是返回键的哈希值
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
//参数一:键的哈希值
//参数二:键
//参数三:值
//参数四:如果键重复了是否保留
// true,表示老元素的值保留,不会覆盖
// false,表示老元素的值不保留,会进行覆盖
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
//定义一个局部变量,用来记录哈希表中数组的地址值。
Node<K,V>[] tab;
//临时的第三方变量,用来记录键值对对象的地址值
Node<K,V> p;
//表示当前数组的长度
int n;
//表示索引
int i;
//把哈希表中数组的地址值,赋值给局部变量tab
tab = table;
if (tab == null || (n = tab.length) == 0){
//1.如果当前是第一次添加数据,底层会创建一个默认长度为16,加载因子为0.75的数组
//2.如果不是第一次添加数据,会看数组中的元素是否达到了扩容的条件
//如果没有达到扩容条件,底层不会做任何操作
//如果达到了扩容条件,底层会把数组扩容为原先的两倍,并把数据全部转移到新的哈希表中
tab = resize();
//表示把当前数组的长度赋值给n
n = tab.length;
}
//拿着数组的长度跟键的哈希值进行计算,计算出当前键值对对象,在数组中应存入的位置
i = (n - 1) & hash;//index
//获取数组中对应元素的数据
p = tab[i];
if (p == null){
//底层会创建一个键值对对象,直接放到数组当中
tab[i] = newNode(hash, key, value, null);
}else {
Node<K,V> e;
K k;
//等号的左边:数组中键值对的哈希值
//等号的右边:当前要添加键值对的哈希值
//如果键不一样,此时返回false
//如果键一样,返回true
boolean b1 = p.hash == hash;
if (b1 && ((k = p.key) == key || (key != null && key.equals(k)))){
e = p;
} else if (p instanceof TreeNode){
//判断数组中获取出来的键值对是不是红黑树中的节点
//如果是,则调用方法putTreeVal,把当前的节点按照红黑树的规则添加到树当中。
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
} else {
//如果从数组中获取出来的键值对不是红黑树中的节点
//表示此时下面挂的是链表
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
//此时就会创建一个新的节点,挂在下面形成链表
p.next = newNode(hash, key, value, null);
//判断当前链表长度是否超过8,如果超过8,就会调用方法treeifyBin
//treeifyBin方法的底层还会继续判断
//判断数组的长度是否大于等于64
//如果同时满足这两个条件,就会把这个链表转成红黑树
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
break;
}
//e: 0x0044 ddd 444
//要添加的元素: 0x0055 ddd 555
//如果哈希值一样,就会调用equals方法比较内部的属性值是否相同
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))){
break;
}
p = e;
}
}
//如果e为null,表示当前不需要覆盖任何元素
//如果e不为null,表示当前的键是一样的,值会被覆盖
//e:0x0044 ddd 555
//要添加的元素: 0x0055 ddd 555
if (e != null) {
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null){
//等号的右边:当前要添加的值
//等号的左边:0x0044的值
e.value = value;
}
afterNodeAccess(e);
return oldValue;
}
}
//threshold:记录的就是数组的长度 * 0.75,哈希表的扩容时机 16 * 0.75 = 12
if (++size > threshold){
resize();
}
//表示当前没有覆盖任何元素,返回null
return null;
}
TreeMap源码
1.TreeMap中每一个节点的内部属性
K key; //键
V value; //值
Entry<K,V> left; //左子节点
Entry<K,V> right; //右子节点
Entry<K,V> parent; //父节点
boolean color; //节点的颜色
2.TreeMap类中中要知道的一些成员变量
public class TreeMap<K,V>{
//比较器对象
private final Comparator<? super K> comparator;
//根节点
private transient Entry<K,V> root;
//集合的长度
private transient int size = 0;
3.空参构造
//空参构造就是没有传递比较器对象
public TreeMap() {
comparator = null;
}
4.带参构造
//带参构造就是传递了比较器对象。
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
5.添加元素
public V put(K key, V value) {
return put(key, value, true);
}
参数一:键
参数二:值
参数三:当键重复的时候,是否需要覆盖值
true:覆盖
false:不覆盖
private V put(K key, V value, boolean replaceOld) {
//获取根节点的地址值,赋值给局部变量t
Entry<K,V> t = root;
//判断根节点是否为null
//如果为null,表示当前是第一次添加,会把当前要添加的元素,当做根节点
//如果不为null,表示当前不是第一次添加,跳过这个判断继续执行下面的代码
if (t == null) {
//方法的底层,会创建一个Entry对象,把他当做根节点
addEntryToEmptyMap(key, value);
//表示此时没有覆盖任何的元素
return null;
}
//表示两个元素的键比较之后的结果
int cmp;
//表示当前要添加节点的父节点
Entry<K,V> parent;
//表示当前的比较规则
//如果我们是采取默认的自然排序,那么此时comparator记录的是null,cpr记录的也是null
//如果我们是采取比较去排序方式,那么此时comparator记录的是就是比较器
Comparator<? super K> cpr = comparator;
//表示判断当前是否有比较器对象
//如果传递了比较器对象,就执行if里面的代码,此时以比较器的规则为准
//如果没有传递比较器对象,就执行else里面的代码,此时以自然排序的规则为准
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else {
V oldValue = t.value;
if (replaceOld || oldValue == null) {
t.value = value;
}
return oldValue;
}
} while (t != null);
} else {
//把键进行强转,强转成Comparable类型的
//要求:键必须要实现Comparable接口,如果没有实现这个接口
//此时在强转的时候,就会报错。
Comparable<? super K> k = (Comparable<? super K>) key;
do {
//把根节点当做当前节点的父节点
parent = t;
//调用compareTo方法,比较根节点和当前要添加节点的大小关系
cmp = k.compareTo(t.key);
if (cmp < 0)
//如果比较的结果为负数
//那么继续到根节点的左边去找
t = t.left;
else if (cmp > 0)
//如果比较的结果为正数
//那么继续到根节点的右边去找
t = t.right;
else {
//如果比较的结果为0,会覆盖
V oldValue = t.value;
if (replaceOld || oldValue == null) {
t.value = value;
}
return oldValue;
}
} while (t != null);
}
//就会把当前节点按照指定的规则进行添加
addEntry(key, value, parent, cmp < 0);
return null;
}
private void addEntry(K key, V value, Entry<K, V> parent, boolean addToLeft) {
Entry<K,V> e = new Entry<>(key, value, parent);
if (addToLeft)
parent.left = e;
else
parent.right = e;
//添加完毕之后,需要按照红黑树的规则进行调整
fixAfterInsertion(e);
size++;
modCount++;
}
private void fixAfterInsertion(Entry<K,V> x) {
//因为红黑树的节点默认就是红色的
x.color = RED;
//按照红黑规则进行调整
//parentOf:获取x的父节点
//parentOf(parentOf(x)):获取x的爷爷节点
//leftOf:获取左子节点
while (x != null && x != root && x.parent.color == RED) {
//判断当前节点的父节点是爷爷节点的左子节点还是右子节点
//目的:为了获取当前节点的叔叔节点
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
//表示当前节点的父节点是爷爷节点的左子节点
//那么下面就可以用rightOf获取到当前节点的叔叔节点
Entry<K,V> y = rightOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
//叔叔节点为红色的处理方案
//把父节点设置为黑色
setColor(parentOf(x), BLACK);
//把叔叔节点设置为黑色
setColor(y, BLACK);
//把爷爷节点设置为红色
setColor(parentOf(parentOf(x)), RED);
//把爷爷节点设置为当前节点
x = parentOf(parentOf(x));
} else {
//叔叔节点为黑色的处理方案
//表示判断当前节点是否为父节点的右子节点
if (x == rightOf(parentOf(x))) {
//表示当前节点是父节点的右子节点
x = parentOf(x);
//左旋
rotateLeft(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
} else {
//表示当前节点的父节点是爷爷节点的右子节点
//那么下面就可以用leftOf获取到当前节点的叔叔节点
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == leftOf(parentOf(x))) {
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
//把根节点设置为黑色
root.color = BLACK;
}
Tip:
1.TreeMap添加元素的时候,键是否需要重写hashCode和equals方法?
此时是不需要重写的。
2.HashMap是哈希表结构的,JDK8开始由数组,链表,红黑树组成的。既然有红黑树,HashMap的键是否需要实现Compareable接口或者传递比较器对象呢?
不需要的。
因为在HashMap的底层,默认是利用哈希值的大小关系来创建红黑树的
3.TreeMap和HashMap谁的效率更高?
如果是最坏情况,添加了8个元素,这8个元素形成了链表,此时TreeMap的效率要更高
但是这种情况出现的几率非常的少。
一般而言,还是HashMap的效率要更高。
4.你觉得在Map集合中,java会提供一个如果键重复了,不会覆盖的put方法呢?
此时putIfAbsent本身不重要。
传递一个思想:
代码中的逻辑都有两面性,如果我们只知道了其中的A面,而且代码中还发现了有变量可以控制两面性的发生。
那么该逻辑一定会有B面。
习惯:
boolean类型的变量控制,一般只有AB两面,因为boolean只有两个值
int类型的变量控制,一般至少有三面,因为int可以取多个值。
5.三种双列集合,以后如何选择?
HashMap LinkedHashMap TreeMap
默认:HashMap(效率最高)
如果要保证存取有序:LinkedHashMap
如果要进行排序:TreeMap文章来源:https://www.toymoban.com/news/detail-726352.html
后记
👉👉💕💕美好的一天,到此结束,下次继续努力!欲知后续,请看下回分解,写作不易,感谢大家的支持!! 🌹🌹🌹文章来源地址https://www.toymoban.com/news/detail-726352.html
到了这里,关于从零开始学习 Java:简单易懂的入门指南之HashMap及TreeMap源码解读(二十四)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!