几种预训练模型微调方法和peft包的使用介绍

这篇具有很好参考价值的文章主要介绍了几种预训练模型微调方法和peft包的使用介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

微调方法

现流行的微调方法有:Lora,prompt,p-tunning v1,p-tunning v2,prefix,adapter等等,下面抱着学习的心态进行宏观层面的介绍
如有错误,欢迎指出

Lora(在旁边添加训练参数)

LoRA(Low-Rank Adaptation)是一种技术,通过低秩分解将权重更新表示为两个较小的矩阵(称为更新矩阵),从而加速大型模型的微调,并减少内存消耗。

为了使微调更加高效,LoRA的方法是通过低秩分解,使用两个较小的矩阵(称为更新矩阵)来表示权重更新。这些新矩阵可以通过训练适应新数据,同时保持整体变化的数量较少。原始的权重矩阵保持冻结,不再接收任何进一步的调整。为了产生最终结果,同时使用原始和适应后的权重进行合并。
几种预训练模型微调方法和peft包的使用介绍,深度学习,语言模型
假设权重的更新在适应过程中也具有较低的“内在秩”。对于一个预训练的权重矩阵W0 ∈ Rd×k,我们通过低秩分解W0 + ∆W = W0 + BA来表示其更新,其中B ∈ Rd×r,A ∈ Rr×k,且秩r ≤ min(d,k)。在训练过程中,W0被冻结,不接收梯度更新,而A和B包含可训练参数。需要注意的是,W0和∆W = BA都与相同的输入进行乘法运算,它们各自的输出向量在坐标上求和。前向传播公式如下:h = W0x + ∆Wx = W0x + BAx

在上图中我们对A使用随机高斯随机分布初始化,对B使用零初始化,因此在训练开始时∆W = BA为零。然后,通过αr对∆Wx进行缩放,其中α是r中的一个常数。在使用Adam优化时,适当地缩放初始化,调整α的过程与调整学习率大致相同。因此,只需将α设置为我们尝试的第一个r,并且不对其进行调整。这种缩放有助于在改变r时减少重新调整超参数的需求。

Adapter(在前面添加训练参数)

2019 年,Houlsby N 等人将 Adapter 引入 NLP 领域,作为全模型微调的一种替代方案。Adapter 主体架构下图所示。
几种预训练模型微调方法和peft包的使用介绍,深度学习,语言模型
在预训练模型每一层(或某些层)中添加 Adapter 模块(如上图左侧结构所示),微调时冻结预训练模型主体,由 Adapter 模块学习特定下游任务的知识。每个 Adapter 模块由两个前馈子层组成,第一个前馈子层将 Transformer 块的输出作为输入,将原始输入维度 d 投影到 m,通过控制 m 的大小来限制 Adapter 模块的参数量,通常情况下 m<<d。在输出阶段,通过第二个前馈子层还原输入维度,将 m 重新投影到 d,作为 Adapter 模块的输出(如上图右侧结构)。通过添加 Adapter 模块来产生一个易于扩展的下游模型,每当出现新的下游任务,通过添加 Adapter 模块来避免全模型微调与灾难性遗忘的问题。Adapter 方法不需要微调预训练模型的全部参数,通过引入少量针对特定任务的参数,来存储有关该任务的知识,降低对模型微调的算力要求。

Prefix-tuning(在中间添加训练参数)

前缀微调(prefix-tunning),用于生成任务的轻量微调。前缀微调将一个连续的特定于任务的向量序列添加到输入,称之为前缀,如下图中的红色块所示。与提示(prompt)不同的是,前缀完全由自由参数组成,与真正的 token 不对应。相比于传统的微调,前缀微调只优化了前缀。因此,我们只需要存储一个大型 Transformer 和已知任务特定前缀的副本,对每个额外任务产生非常小的开销。

Prompt tuning

提示通过包括描述任务的文本提示或甚至演示任务示例的文本提示来为特定的下游任务准备一个冻结的预训练模型。具体的,给每个任务定义 Prompt,拼接到数据上作为输入,同时 freeze 预训练模型进行训练,在没有加额外层的情况下,可以看到随着模型体积增大效果越来越好,最终追上了精调的效果。

提示方法可以分为两类:

  • 硬提示(Hard Prompts):手工制作的具有离散输入标记的文本提示;缺点是需要花费很多精力来创建一个好的提示。
  • 软提示(Soft Prompts):可与输入嵌入连接并进行优化以适应数据集的可学习张量;缺点是它们不太易读,因为您不是将这些“虚拟标记”与实际单词的嵌入进行匹配。

PEFT

PEFT(Parameter-Efficient Fine-Tuning,参数高效微调),是一个用于在不微调所有模型参数的情况下,高效地将预训练语言模型(PLM)适应到各种下游应用的库。

PEFT方法仅微调少量(额外的)模型参数,显著降低了计算和存储成本,因为对大规模PLM进行完整微调的代价过高。最近的最先进的PEFT技术实现了与完整微调相当的性能。

代码:
https://github.com/huggingface/peft
文档:
https://huggingface.co/docs/peft/index

PEFT 使用

接下来将展示 PEFT 的主要特点,并帮助在消费设备上通常无法访问的情况下训练大型预训练模型。您将了解如何使用LoRA来训练1.2B参数的bigscience/mt0-large模型,以生成分类标签并进行推理。

PeftConfig

每个 PEFT 方法由一个PeftConfig类来定义,该类存储了用于构建PeftModel的所有重要参数。

由于您将使用LoRA,您需要加载并创建一个LoraConfig类。在LoraConfig中,指定以下参数:

task_type,在本例中为序列到序列语言建模
inference_mode,是否将模型用于推理
r,低秩矩阵的维度
lora_alpha,低秩矩阵的缩放因子
lora_dropout,LoRA层的dropout概率
from peft import LoraConfig, TaskType
peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)

有关您可以调整的其他参数的更多详细信息,请参阅LoraConfig参考。

PeftModel

使用 get_peft_model() 函数可以创建PeftModel。它需要一个基础模型 - 您可以从 Transformers 库加载 - 以及包含配置特定 PEFT 方法的PeftConfig。

首先加载您要微调的基础模型。

from transformers import AutoModelForSeq2SeqLM

model_name_or_path = "bigscience/mt0-large"
tokenizer_name_or_path = "bigscience/mt0-large"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)

使用get_peft_model函数将基础模型和peft_config包装起来,以创建PeftModel。要了解您模型中可训练参数的数量,可以使用print_trainable_parameters方法。在这种情况下,您只训练了模型参数的0.19%!

from peft import get_peft_model

model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
输出示例: trainable params: 2359296 || all params: 1231940608 || trainable%: 0.19151053100118282

至此,我们已经完成了!现在您可以使用Transformers的Trainer、 Accelerate,或任何自定义的PyTorch训练循环来训练模型。

保存和加载模型

在模型训练完成后,您可以使用save_pretrained函数将模型保存到目录中。您还可以使用push_to_hub函数将模型保存到Hub(请确保首先登录您的Hugging Face帐户)。

model.save_pretrained("output_dir")

如果要推送到Hub

from huggingface_hub import notebook_login

notebook_login()
model.push_to_hub("my_awesome_peft_model")

这只保存了已经训练的增量PEFT权重,这意味着存储、传输和加载都非常高效。例如,这个在RAFT数据集的twitter_complaints子集上使用LoRA训练的bigscience/T0_3B模型只包含两个文件:adapter_config.json和adapter_model.bin,后者仅有19MB!

使用from_pretrained函数轻松加载模型进行推理:

from transformers import AutoModelForSeq2SeqLM
from peft import PeftModel, PeftConfig

peft_model_id = "smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id)

参考文章:
http://lihuaxi.xjx100.cn/news/1428773.html?action=onClick文章来源地址https://www.toymoban.com/news/detail-726391.html

到了这里,关于几种预训练模型微调方法和peft包的使用介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PEFT学习:使用LORA进行LLM微调

    由于LORA,AdaLORA都集成在PEFT上了,所以在使用的时候安装PEFT是必备项 方法一:PyPI To install 🤗 PEFT from PyPI: 方法二:Source New features that haven’t been released yet are added every day, which also means there may be some bugs. To try them out, install from the GitHub repository: If you’re working on contributing to th

    2024年02月10日
    浏览(49)
  • 高效微调大型预训练模型的Prompt Learning方法

    近年来,自然语言处理(NLP)领域的预训练模型日益增多,应用场景也变得多样。从NER(命名实体识别)到生成任务,如何高效地使用这些模型并进行微调成为了研究和实践的重要课题。本文将深入探讨一种称为Prompt Learning的方法,通过选择模型、构建模板、定义verbalizer等步

    2024年02月02日
    浏览(43)
  • 省显存(内存?)的大语言模型(LLMs)训练/微调/推理方法

    即使 RTX 3090 有着 24GB 的 RAM,使用一块 RTX 3090 依然无法 fp32 精度训练最小号的 LLaMA-6B。 估算模型所需的RAM 首先,需要了解如何根据参数量估计模型大致所需的 RAM,这在实践中有很重要的参考意义。需要通过估算设置 batch_size,设置模型精度,选择微调方法和参数分布方法等

    2024年02月09日
    浏览(46)
  • Stable Diffusion:使用自己的数据集微调训练LoRA模型

    由于本人水平有限,难免出现错漏,敬请批评改正。 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理 专栏或我的个人主页查看 基于DETR的人脸伪装检测 YOLOv7训练自己的数据集(口罩检测) YOLOv8训练自己的数据集(足球检测) YOLOv5:TensorRT加速YOLOv5模型推理 YOLOv5:I

    2024年02月12日
    浏览(84)
  • DyLoRA:使用动态无搜索低秩适应的预训练模型的参数有效微调

    又一个针对LoRA的改进方法: DyLoRA: Parameter-Efficient Tuning of Pretrained Models using Dynamic Search-Free Low Rank Adaptation https://arxiv.org/pdf/2210.07558v2.pdf https://github.com/huawei-noah/KD-NLP/tree/main/DyLoRA LoRA存在的问题 : rank的值是固定的,训练完成后不能修改。 优化rank的值需要大量的搜索和努力。

    2023年04月20日
    浏览(48)
  • 微调llama 3 — PEFT微调和全量微调

    官方blog llama 3 目前有两个版本:8B版和70B版。8B版本拥有8.03B参数,其尺寸较小,可以在消费者硬件上本地运行。 meta-llama/Meta-Llama-3-8B meta-llama/Meta-Llama-3-70B 超过400B个参数的第三个版本目前仍在训练中…… Llama 3与Llama 2具有相同的架构,但词汇表要大得多,包含128k entries,而

    2024年04月27日
    浏览(36)
  • Prompt、RAG、微调还是重新训练?如何选择正确的生成式AI的使用方法

    生成式人工智能正在快速发展,许多人正在尝试使用这项技术来解决他们的业务问题。一般情况下有4种常见的使用方法: Prompt Engineering Retrieval Augmented Generation (RAG 检索增强生成) 微调 从头开始训练基础模型(FM) 本文将试图根据一些常见的可量化指标,为选择正确的生成式人

    2024年02月12日
    浏览(41)
  • python下载包的几种方法

    有时候下载包总是报错,各种各样的错误。参考了很多很多,最终想记下一些。按照从易到繁的顺序。 最方便的就是通过pycharm编译器,点击加号搜索包。 然后是用anaconda prompt使用命令 pip install [-i 镜像网址] 包名,方括号可有可无,看下载速度或者是否报错。 接着就是跑到

    2024年02月15日
    浏览(45)
  • LLMs之Chinese-LLaMA-Alpaca-2:源码解读(run_clm_pt_with_peft.py文件)—模型训练前置工作(参数解析+配置日志)→模型初始化(检测是否存在训练过的chec

    LLMs之Chinese-LLaMA-Alpaca-2:源码解读(run_clm_pt_with_peft.py文件)—模型训练前置工作(参数解析+配置日志)→模型初始化(检测是否存在训练过的checkpoint+加载预训练模型和tokenizer)→数据预处理(处理【标记化+分块】+切分txt数据集)→优化模型配置( 量化模块 +匹配模型vocabulary大小与to

    2024年02月07日
    浏览(43)
  • LLMs之Chinese-LLaMA-Alpaca-2:源码解读(run_clm_sft_with_peft.py文件)—模型训练前置工作(参数解析+配置日志)→模型初始化(检测是否存在训练过的che

    LLMs之Chinese-LLaMA-Alpaca-2:源码解读(run_clm_sft_with_peft.py文件)—模型训练前置工作(参数解析+配置日志)→模型初始化(检测是否存在训练过的checkpoint+加载预训练模型和tokenizer)→数据预处理(监督式任务的数据收集器+指令数据集【json格式】)→优化模型配置(量化模块+匹配模型voca

    2024年02月06日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包