交通物流模型 | 基于交通图卷积长短时记忆网络的网络级交通流预测

这篇具有很好参考价值的文章主要介绍了交通物流模型 | 基于交通图卷积长短时记忆网络的网络级交通流预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

交通物流模型 | 基于交通图卷积长短时记忆网络的网络级交通流预测

由于道路网络时变的交通模式和复杂的空间依赖性,交通流预测是一个具有挑战性的时空预测问题。为了克服该挑战,作者将交通网络看为一张图,并提出一个新的深度学习预测模型,交通图卷积长短时记忆网络(TGC-LSTM)学习交通网络中道路之间的相互作用,并预测网络级的交通状态。作者基于物理网络拓扑定义了交通图卷积,并讨论了与谱图卷积的关系。图卷积权值的L1范数和图卷积特征的L2范数被加到模型的损失函数中增强模型的可解释性。实验结果表明提出的模型在两个真实世界数据集的表现要优于其他先进模型。图卷积权重的可视化表明提出的框架可以识别交通网络中影响力较大的路段。

交通流预测是智能交通系统(ITS)中最具挑战性的任务之一。由于近年来交通数据的数量和种类不断增加,数据驱动的交通预测方法已经显示出相当大的前景,其能力优于传统的和基于模拟的方法。现有的预测方法大致分为两类,一类是经典的统计模型,这类模型在处理高维时间序列数据方面具有一定的缺陷;第二类则是机器学习模型,如支持向量机(SVR)等,这类模型在捕捉客流空间特性上具有一定缺陷。近年来,随着深度学习的飞速发展,基于深度学习的交通预测模型逐渐引起学者们的关注。例如,循环神经网络(RNN)以及其变体LSTM和GRU以及卷积神经网络(CNN)等,均展现出解决交通流预测问题的良好潜力。考虑到交通网络本质上具有显著的物理拓扑特征,部分学者采用图卷积神经网络捕捉复杂的空间特性。然而,这类图卷积模型的缺陷之一是卷积算子的感受野不受交通网络图的限制。事实上,交通网络中相距较远的两个节点的交通状态在短时间内不应相互影响,且邻接的节点是否相互影响也需要进一步研究。因此,作者提出一个基于实际交通中自由流速度的文章来源地址https://www.toymoban.com/news/detail-726638.html

到了这里,关于交通物流模型 | 基于交通图卷积长短时记忆网络的网络级交通流预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 毕业设计-基于深度学习的交通路面障碍物目标检测系统 YOLO python 卷积神经网络 人工智能

    目录  前言 设计思路 一、课题背景与意义 二、算法理论原理 三、检测的实现 3.1 数据集 3.2 实验及结果分析 实现效果图样例 最后        📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各

    2024年02月03日
    浏览(66)
  • 基于Frank Wolfe算法,求解交通分配UE模型(Python & NetWorkX)

    目录 一、用户均衡模型简略介绍        1.1 Wardrop第一原理 1.2 用户均衡模型 1.3 BPR函数  1.4 用户均衡模型的积分项  二、Frank Wolfe算法求解步骤 三、代码 3.1 导入必要的库  3.2 构建交通网络 3.3 绘制交通路网图 3.4 定义BPR函数 3.5 初始化路网流量 3.6 获取 flow_temp 3.7 获取

    2024年04月12日
    浏览(70)
  • 基于深度学习的高精度交通信号灯检测系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度交通信号灯检测识别可用于日常生活中检测与定位交通信号灯目标,利用深度学习算法可实现图片、视频、摄像头等方式的交通信号灯目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,

    2024年02月16日
    浏览(38)
  • 项目实战解析:基于深度学习搭建卷积神经网络模型算法,实现图像识别分类

    随着人工智能的不断发展,深度学习这门技术也越来越重要,很多人都开启了学习机器学习,本文将通过项目开发实例,带领大家从零开始设计实现一款基于深度学习的图像识别算法。 学习本章内容, 你需要掌握以下基础知识: Python 基础语法 计算机视觉库(OpenCV) 深度学习

    2024年02月03日
    浏览(66)
  • Python基于PyTorch实现卷积神经网络回归模型(CNN回归算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(50)
  • Python基于PyTorch实现卷积神经网络分类模型(CNN分类算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(51)
  • 论文笔记:InternImage—基于可变形卷积的视觉大模型,超越ViT视觉大模型,COCO 新纪录 64.5 mAP!

    Title:InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions Paper Link:https://arxiv.org/abs/2211.05778 Code Link:https://github.com/OpenGVLab/InternImage 拿到文章之后先看了一眼在ImageNet1k上的结果,确实很高,超越了同等大小下的VAN、RepLKNet、ConvNext等先进的大核注意力CNN模型,

    2024年02月05日
    浏览(34)
  • 【MATLAB第46期】基于MATLAB的改进模糊卷积神经网络IFCNN分类预测模型

    在正常CNN卷积神经网络训练阶段之后,使用进化算法(蜜蜂算法)拟合深度学习权重和偏差。 本文案例数据中, 用深度模型进行4分类预测。 先在 CNN 训练之后,为每个类别权重创建初始模糊模型 然后提取全连接层的权重进行进化寻优,并替换初始权重 最后,优化后的权重

    2024年02月11日
    浏览(50)
  • 基于人工智能的物流调度:提高物流效率、降低成本

    作者:禅与计算机程序设计艺术 物流调度是指在仓库管理过程中,根据客户需求、系统运行状态、库存等各种条件,将货物准确、及时、合理地送达到指定的地点。作为物流行业的重要环节,物流调度算法在优化产品生产、提升经济效益方面起着至关重要的作用。 目前,智

    2024年02月09日
    浏览(47)
  • 四层负载均衡的NAT模型与DR模型推导 | 京东物流技术团队

    本文首先讲述四层负载均衡技术的特点,然后通过提问的方式推导出四层负载均衡器的NAT模型和DR模型的工作原理。通过本文可以了解到四层负载均衡的技术特点、NAT模型和DR模型的工作原理、以及NAT模型和DR模型的优缺点。读者可以重点关注NAT模型到DR模型演进的原因(一种技

    2024年02月10日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包