Opengl之立方体贴图

这篇具有很好参考价值的文章主要介绍了Opengl之立方体贴图。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

简单来说,立方体贴图就是一个包含了6个2D纹理的纹理,每个2D纹理都组成了立方体的一个面:一个有纹理的立方体。你可能会奇怪,这样一个立方体有什么用途呢?为什么要把6张纹理合并到一张纹理中,而不是直接使用6个单独的纹理呢?立方体贴图有一个非常有用的特性,它可以通过一个方向向量来进行索引/采样。假设我们有一个1x1x1的单位立方体,方向向量的原点位于它的中心。使用一个橘黄色的方向向量来从立方体贴图上采样一个纹理值会像是这样:

Opengl之立方体贴图,OpenGL,贴图

创建立方体贴图 

立方体贴图是和其它纹理一样的,所以如果想创建一个立方体贴图的话,我们需要生成一个纹理,并将其绑定到纹理目标上,之后再做其它的纹理操作。这次要绑定到GL_TEXTURE_CUBE_MAP:

unsigned int textureID;
glGenTextures(1, &textureID);
glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);

因为立方体贴图包含有6个纹理,每个面一个,我们需要调用glTexImage2D函数6次,参数和之前教程中很类似。但这一次我们将纹理目标(target)参数设置为立方体贴图的一个特定的面,告诉OpenGL我们在对立方体贴图的哪一个面创建纹理。这就意味着我们需要对立方体贴图的每一个面都调用一次glTexImage2D。

由于我们有6个面,OpenGL给我们提供了6个特殊的纹理目标,专门对应立方体贴图的一个面。

纹理目标 方位
GL_TEXTURE_CUBE_MAP_POSITIVE_X
GL_TEXTURE_CUBE_MAP_NEGATIVE_X
GL_TEXTURE_CUBE_MAP_POSITIVE_Y
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y
GL_TEXTURE_CUBE_MAP_POSITIVE_Z
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z

和OpenGL的很多枚举(Enum)一样,它们背后的int值是线性递增的,所以如果我们有一个纹理位置的数组或者vector,我们就可以从GL_TEXTURE_CUBE_MAP_POSITIVE_X开始遍历它们,在每个迭代中对枚举值加1,遍历了整个纹理目标:

int width, height, nrChannels;
unsigned char *data;  
for(unsigned int i = 0; i < textures_faces.size(); i++)
{
    data = stbi_load(textures_faces[i].c_str(), &width, &height, &nrChannels, 0);
    glTexImage2D(
        GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 
        0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data
    );
}

这里我们有一个叫做textures_faces的vector,它包含了立方体贴图所需的所有纹理路径,并以表中的顺序排列。这将为当前绑定的立方体贴图中的每个面生成一个纹理。

因为立方体贴图和其它纹理没什么不同,我们也需要设定它的环绕和过滤方式:

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

不要被GL_TEXTURE_WRAP_R吓到,它仅仅是为纹理的R坐标设置了环绕方式,它对应的是纹理的第三个维度(和位置的z一样)。我们将环绕方式设置为GL_CLAMP_TO_EDGE,这是因为正好处于两个面之间的纹理坐标可能不能击中一个面(由于一些硬件限制),所以通过使用GL_CLAMP_TO_EDGE,OpenGL将在我们对两个面之间采样的时候,永远返回它们的边界值。

在绘制使用立方体贴图的物体之前,我们要先激活对应的纹理单元,并绑定立方体贴图,这和普通的2D纹理没什么区别。

在片段着色器中,我们使用了一个不同类型的采样器,samplerCube,我们将使用texture函数使用它进行采样,但这次我们将使用一个vec3的方向向量而不是vec2。使用立方体贴图的片段着色器会像是这样的:

in vec3 textureDir; // 代表3D纹理坐标的方向向量
uniform samplerCube cubemap; // 立方体贴图的纹理采样器

void main()
{             
    FragColor = texture(cubemap, textureDir);
}

看起来很棒,但为什么要用它呢?恰巧有一些很有意思的技术,使用立方体贴图来实现的话会简单多了。其中一个技术就是创建一个天空盒(Skybox)。

天空盒

天空盒是一个包含了整个场景的(大)立方体,它包含周围环境的6个图像,让玩家以为他处在一个比实际大得多的环境当中。游戏中使用天空盒的例子有群山、白云或星空。下面这张截图中展示的是星空的天空盒,它来自于『上古卷轴3』:

Opengl之立方体贴图,OpenGL,贴图

 立方体贴图能完美满足天空盒的需求:我们有一个6面的立方体,每个面都需要一个纹理。在上面的图片中,他们使用了夜空的几张图片,让玩家产生其位于广袤宇宙中的错觉,但实际上他只是在一个小小的盒子当中。

你可以在网上找到很多像这样的天空盒资源。比如说这个网站就提供了很多天空盒。天空盒图像通常有以下的形式:

Opengl之立方体贴图,OpenGL,贴图

加载天空盒

因为天空盒本身就是一个立方体贴图,加载天空盒和之前加载立方体贴图时并没有什么不同。为了加载天空盒,我们将使用下面的函数,它接受一个包含6个纹理路径的vector:

unsigned int loadCubemap(vector<std::string> faces)
{
    unsigned int textureID;
    glGenTextures(1, &textureID);
    glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);

    int width, height, nrChannels;
    for (unsigned int i = 0; i < faces.size(); i++)
    {
        unsigned char *data = stbi_load(faces[i].c_str(), &width, &height, &nrChannels, 0);
        if (data)
        {
            glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 
                         0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data
            );
            stbi_image_free(data);
        }
        else
        {
            std::cout << "Cubemap texture failed to load at path: " << faces[i] << std::endl;
            stbi_image_free(data);
        }
    }
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

    return textureID;
}

函数本身应该很熟悉了。它基本就是上一部分中立方体贴图的代码,只不过合并到了一个便于管理的函数中。

之后,在调用这个函数之前,我们需要将合适的纹理路径按照立方体贴图枚举指定的顺序加载到一个vector中。

vector<std::string> faces
{
    "right.jpg",
    "left.jpg",
    "top.jpg",
    "bottom.jpg",
    "front.jpg",
    "back.jpg"
};
unsigned int cubemapTexture = loadCubemap(faces);

现在我们就将这个天空盒加载为一个立方体贴图了,它的id是cubemapTexture。我们可以将它绑定到一个立方体中,替换掉用了很长时间的难看的纯色背景。

显示天空盒

由于天空盒是绘制在一个立方体上的,和其它物体一样,文章来源地址https://www.toymoban.com/news/detail-727377.html

到了这里,关于Opengl之立方体贴图的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • GLES学习笔记---立方体贴图(一张图)

    立方体贴图 如上图是一张2D纹理,我们需要将这个2D纹理贴到立方体上,立方体有6个面,所以上面的2D图分成了6个面,共有14个纹理坐标 上边的立方体一共8个顶点坐标,范围是[-1, 1]; 我们要做的是将纹理图贴到这6个面上面 我们绘制的时候使用了VBO、VAO、EBO、 indices里面是绘

    2024年01月19日
    浏览(43)
  • 【css】动画:立方体相册

    2024年02月11日
    浏览(40)
  • 【libGDX】立方体手动旋转

    ​ 本文主要介绍使用 libGDX 绘制立方体,并实现手动触摸事件控制立方体旋转。 ​ 为方便控制触摸旋转,并提高渲染性能,我们通过改变相机的位置和姿态实现立方体旋转效果。 ​ 读者如果对 libGDX 不太熟悉,请回顾以下内容。 使用Mesh绘制三角形 使用Mesh绘制矩形 使用M

    2024年03月09日
    浏览(42)
  • VCG 网格简化之移动立方体

    我们先来回顾一下原始的移动立方体算法,该算法的基本思想是通过找出所有与等值面相交的体素,在这些基础上再分别找出每个体素与等值面相交的交面,最终将这些交面连在一起即是我们所求的曲面。其大致过程如下所述: (1)首先将点云在空间上进行体素划分,并对

    2024年01月22日
    浏览(34)
  • 项目管理之干系人立方体分析

    权力利益方格、权力影响方格,或作用影响方格 :基于干系人的职权级别(权力)、对项目成果的关心程度(利益)、对项目成果的影响能力(影响),或改变项目计划或执行的能力,每一种方格都可用于对干系人进行分类。对于小型项目、干系人与项目的关系很简单的项目,或干系

    2024年02月06日
    浏览(33)
  • 计算机图形学 | 实验六:旋转立方体

    华中科技大学《计算机图形学》课程 MOOC地址:计算机图形学(HUST) 在正式搭建环境之前,我们先来介绍一下读完下面的部分你会了解些什么。 绘制出旋转立方体需要的新知识 认识一些 OpenGL的新功能 接下来,我们来介绍一下绘制旋转立方体。绘制效果如下: Z-缓存(Z-Buff

    2024年02月06日
    浏览(38)
  • 使用html+css制作一个发光立方体特效

    使用html+css制作一个发光立方体特效

    2024年03月14日
    浏览(56)
  • css3实现3D立方体旋转特效源码

    CSS3自动旋转正方体3D特效是一款基于css3 keyframes属性制作的图片相册自动旋转立方体特效 css3实现3D立方体旋转特效代码

    2024年04月09日
    浏览(38)
  • Python展示 RGB立方体的二维切面视图

    生成 RGB 立方体的三个中间切面视图,分别对应于红色、绿色和蓝色通道。这些切面展示了在固定一个颜色通道值的情况下,其他两个颜色通道是如何变化的。虽然这不能显示出 RGB 立方体的全部复杂性,但它提供了一个很好的视觉表示,帮助理解 RGB 颜色空间的工作原理。

    2024年01月16日
    浏览(44)
  • Qt3D绘制旋转立方体

    近期用了款叫DesktopSpace,也想实现一下这款软件实现的效果 具体实现步骤: 使用Qt3D绘制个旋转的立方体(一) 使用快捷键控制立方体显示面(二) 创建6个人虚拟桌面,截取不同虚拟桌面,显示在不同的面上 (三) 在立方体上播放视频 首先用Qt3D绘制一下桌面截图旋转的效

    2024年02月06日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包