笔记36:CNN的多通道卷积到底是什么样的

这篇具有很好参考价值的文章主要介绍了笔记36:CNN的多通道卷积到底是什么样的。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

笔记36:CNN的多通道卷积到底是什么样的,入门系列,笔记,cnn,人工智能

总结:

(1)输入卷积层的feature_map的通道数,就是该卷积层每个卷积核所含有的通道数

(2)输出卷积层的feature_map的通道数,就是该卷积层所含有的卷积核的个数

a

a

a

a

解释:【假设  ---  输入卷积层的 feature_map 通道数为5】

笔记36:CNN的多通道卷积到底是什么样的,入门系列,笔记,cnn,人工智能

可以知道:因为该卷积层中含有100个不同的卷积核,所以最后输出的 feature_map 是100通道的文章来源地址https://www.toymoban.com/news/detail-727413.html

到了这里,关于笔记36:CNN的多通道卷积到底是什么样的的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分类预测 | MATLAB实现1D-2D-CNN-GRU的多通道输入数据分类预测

    分类效果 基本介绍 结合1D时序-2D图像多模态融合的CNN-GRU故障识别算法,基于一维时序信号和二维图像多元信息融合的卷积神经网络结门控循环单元网络的数据分类预测/故障识别算法。要求2020版以上。 采用双支路输入,一路为图像输入经CNN提取特征,一路为特征序列输入经

    2024年02月12日
    浏览(40)
  • 【解锁未来】让微软Copilot介绍自己,再由ChatGPT润色文章,到底能成什么样?

    今天突发奇想,如果让 微软Copilot介绍自己,再由ChatGPT润色文章,到底能成什么样? 问:撰写关于微软bing的文章 微软bing是一款全球领先的搜索引擎,它可以帮助用户快速、准确、安全地找到所需的信息。微软bing不仅提供了丰富的搜索功能,如网页、图片、视频、新闻、地

    2024年02月05日
    浏览(46)
  • (Matlab)基于CNN-Bi_LSTM的多输入分类(卷积神经网络-双向长短期记忆网络)

    目录 一、程序及算法内容介绍: 基本内容: 亮点与优势: 二、实际运行效果: 三、部分代码展示: 四、完整代码+数据下载: 本代码基于 Matlab 平台编译,将 卷积神经网络 ( CNN )与 双向长短期记忆神经网络 ( Bi- LSTM )结合,进行数据回归预测 输入训练的数据包含 12 个特征

    2024年02月01日
    浏览(42)
  • 回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测

    效果一览 基本介绍 1.RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测 可直接运行Matlab; 2.评价指标包括: R2、MAE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。要求2021版本及以上。 3.2023年新算法霜冰优化算法RIME优化的参数为:CNN的批处理大小、学

    2024年02月06日
    浏览(36)
  • 回归预测 | Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积神经网络-支持向量机的多输入单输出回归预测

    效果一览 基本介绍 1.WOA-CNN-SVM鲸鱼算法优化卷积神经网络-支持向量机的多变量回归预测 可直接运行Matlab; 2.评价指标包括: R2、MAE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。要求2021版本及以上。 3.鲸鱼算法WOA优化的参数为:CNN的批处理大小、学习率、正则化系数,能

    2024年02月06日
    浏览(42)
  • 一区优化直接写:KOA-CNN-BiLSTM-Attention开普勒优化卷积、长短期记忆网络融合注意力机制的多变量回归预测程序!

    适用平台:Matlab 2023版及以上 KOA开普勒优化算法,于2023年5月发表在SCI、中科院1区Top顶级期刊《Knowledge-Based Systems》上。 该算法提出时间很短,目前还没有套用这个算法的文献。 同样的,我们利用该新鲜出炉的算法对我们的CNN-BiLSTM-Attention时序和空间特征结合-融合注意力机制

    2024年01月19日
    浏览(40)
  • 什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(2)

    参考视频:https://www.youtube.com/watch?v=E5Z7FQp7AQQlist=PLuhqtP7jdD8CD6rOWy20INGM44kULvrHu 视频4:CNN 中 stride 的概念 如上图,stride 其实就是 ”步伐“ 的概念。 默认情况下,滑动窗口一次移动一步。而当 stride = 2 时,则一次移动两步,垂直移动和水平移动都是。 当我们提高 stride 的值的时

    2024年02月06日
    浏览(34)
  • 什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(1)

    先看卷积是啥,url: https://www.bilibili.com/video/BV1JX4y1K7Dr/?spm_id_from=333.337.search-card.all.clickvd_source=7a1a0bc74158c6993c7355c5490fc600 下面这个式子就是卷积 看完了,感觉似懂非懂 下一个参考视频:https://www.youtube.com/watch?v=E5Z7FQp7AQQlist=PLuhqtP7jdD8CD6rOWy20INGM44kULvrHu 视频1:简单介绍卷积神经网络

    2024年02月08日
    浏览(42)
  • 什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(3)

    参考视频:https://www.youtube.com/watch?v=E5Z7FQp7AQQlist=PLuhqtP7jdD8CD6rOWy20INGM44kULvrHu 视频7:CNN 的全局架构 卷积层除了做卷积操作外,还要加上 bias ,再经过非线性的函数,这么做的原因是 “scaled properly” 通常滑动窗口(filter) 不止一个,如下图 如下图是一个 CNN 的全部流程 如上图,

    2024年02月06日
    浏览(37)
  • 为什么深度学习网络越往后卷积核通道数越大

    在深度神经网络中,通常将前面的卷积层设计为 提取较为基础的特征(物理轮廓、边缘、颜色、纹理) ,后面的卷积层则负责 进一步提取更加高级的特征(和类别相关的抽象特征) 。因此,后面的卷积层需要更加复杂、抽象的特征表达能力,才能有效地提取更好的特征。 为了增

    2024年02月13日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包