LeetCode 1277. 统计全为 1 的正方形子矩阵【动态规划】1613

这篇具有很好参考价值的文章主要介绍了LeetCode 1277. 统计全为 1 的正方形子矩阵【动态规划】1613。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。

示例 1:

输入:matrix =
[
  [0,1,1,1],
  [1,1,1,1],
  [0,1,1,1]
]
输出:15
解释:
边长为 1 的正方形有 10 个。
边长为 2 的正方形有 4 个。
边长为 3 的正方形有 1 个。
正方形的总数 = 10 + 4 + 1 = 15.

示例 2:

输入:matrix = 
[
  [1,0,1],
  [1,1,0],
  [1,1,0]
]
输出:7
解释:
边长为 1 的正方形有 6 个。 
边长为 2 的正方形有 1 个。
正方形的总数 = 6 + 1 = 7.

提示:

  • 1 <= arr.length <= 300
  • 1 <= arr[0].length <= 300
  • 0 <= arr[i][j] <= 1

解法 动态规划/递推(最优)

本题和 221. 最大正方形 非常类似,使用的方法也几乎相同。

我们用 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示 ( i , j ) (i,j) (i,j) 为右下角的正方形的最大边长,那么除此定义之外, d p [ i ] [ j ] = x dp[i][j] = x dp[i][j]=x 也表示 ( i , j ) (i,j) (i,j) 为右下角的正方形的数目为 x x x(即边长为 1 , 2 , . . . , x 1, 2, ..., x 1,2,...,x 的正方形各一个)。在计算出所有的 d p [ i ] [ j ] dp[i][j] dp[i][j] 后,我们将它们进行累加,就可以得到矩阵中正方形的数目

我们尝试挖掘 d p [ i ] [ j ] dp[i][j] dp[i][j] 与相邻位置的关系来计算出 d p [ i ] [ j ] dp[i][j] dp[i][j] 的值。
LeetCode 1277. 统计全为 1 的正方形子矩阵【动态规划】1613,动态规划,leetcode,矩阵,动态规划
如上图所示,若对于位置 ( i , j ) (i,j) (i,j) d p [ i ] [ j ] = 4 dp[i][j] = 4 dp[i][j]=4 ,我们将以 ( i , j ) (i,j) (i,j) 为右下角、边长为 4 4 4 的正方形涂上色,可以发现其左侧位置 ( i , j − 1 ) (i, j - 1) (i,j1) ,上方位置 ( i − 1 , j ) (i - 1, j) (i1,j) 和左上位置 ( i − 1 , j − 1 ) (i - 1, j - 1) (i1,j1) 均可以作为一个边长为 4 − 1 = 3 4 - 1 = 3 41=3 的正方形的右下角。也就是说,这些位置的的 d p dp dp 值至少为 3 3 3 ,即:

dp[i][j - 1] >= dp[i][j] - 1
dp[i - 1][j] >= dp[i][j] - 1
dp[i - 1][j - 1] >= dp[i][j] - 1

将这三个不等式联立,可以得到:
min ⁡ ( d p [ i ] [ j − 1 ] ,   d p [ i − 1 ] [ j ] ,   d p [ i − 1 ] [ j − 1 ] ) ≥ d p [ i ] [ j ] − 1 \min\big(dp[i][j - 1],\ dp[i - 1][j],\ dp[i - 1][j - 1]\big) \geq dp[i][j] - 1 min(dp[i][j1], dp[i1][j], dp[i1][j1])dp[i][j]1

这是我们通过固定 d p [ i ] [ j ] dp[i][j] dp[i][j] 的值,判断其相邻位置与之的关系得到的不等式。同理,我们也可以固定 d p [ i ] [ j ] dp[i][j] dp[i][j] 相邻位置的值,得到另外的限制条件

如上图所示,假设 d p [ i ] [ j − 1 ] dp[i][j - 1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i - 1][j] dp[i1][j] d p [ i − 1 ] [ j − 1 ] dp[i - 1][j - 1] dp[i1][j1] 中的最小值为 3 3 3 ,也就是说, ( i , j − 1 ) (i, j - 1) (i,j1) ( i − 1 , j ) (i - 1, j) (i1,j) ( i − 1 , j − 1 ) (i - 1, j - 1) (i1,j1) 均可以作为一个边长为 3 3 3 的正方形的右下角。我们将这些边长为 3 3 3 的正方形依次涂上色,可以发现,如果位置 ( i , j ) (i,j) (i,j) 的元素为 1 1 1 ,那么它可以作为一个边长为 4 4 4 的正方形的右下角, d p dp dp 值至少为 4 4 4 ,即:
d p [ i ] [ j ] ≥ min ⁡ ( f [ i ] [ j − 1 ] , f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − 1 ] ) + 1 dp[i][j] \geq \min\big(f[i][j - 1], f[i - 1][j], f[i - 1][j - 1]\big) + 1 dp[i][j]min(f[i][j1],f[i1][j],f[i1][j1])+1
将其与上一个不等式联立,可以得到:
d p [ i ] [ j ] = min ⁡ ( d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − 1 ] ) + 1 dp[i][j] = \min\big(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]\big) + 1 dp[i][j]=min(dp[i][j1],dp[i1][j],dp[i1][j1])+1
这样我们就得到了 d p [ i ] [ j ] dp[i][j] dp[i][j] 的递推式。此外还要考虑边界( i = 0 i = 0 i=0 j = 0 j = 0 j=0)以及位置 ( i , j ) (i,j) (i,j) 的元素为 0 0 0 的情况。

我们按照行优先的顺序依次计算 d p [ i ] [ j ] dp[i][j] dp[i][j] 的值,就可以得到最终的答案。

class Solution {
public:
    int countSquares(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        int ans = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == 1) {
                    dp[i + 1][j + 1] = 1 + 
                        min(dp[i][j], 
                            min(dp[i][j + 1], dp[i + 1][j]));
                    ans += dp[i + 1][j + 1];
                }
            }
        }
        return ans;
    }
};

由于递推式中 d p [ i ] [ j ] dp[i][j] dp[i][j] 只与本行和上一行的若干个值有关,因此空间复杂度可以优化至 O ( N ) O(N) O(N)

class Solution {
public:
    int countSquares(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<int> dp(n + 1);
        int ans = 0;
        int pre = 0, temp = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == 1) {
                    temp = dp[j + 1];
                    dp[j + 1] = 1 + 
                        min(pre, 
                            min(dp[j + 1], dp[j]));
                    pre = temp; // pre为dp[i][j]
                    ans += dp[j + 1];
                } else pre = dp[j + 1], dp[j + 1] = 0; // 注意此时也要记录dp[i][j],并更新dp[i+1][j+1]
            }
        }
        return ans;
    }
};

复杂度分析:文章来源地址https://www.toymoban.com/news/detail-727546.html

  • 时间复杂度: O ( m n ) O(mn) O(mn)
  • 空间复杂度: O ( n ) O(n) O(n)

到了这里,关于LeetCode 1277. 统计全为 1 的正方形子矩阵【动态规划】1613的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LeetCode-221. 最大正方形

    题目来源 221. 最大正方形 现在我们需要找到只包含 ‘1’ 的最大正方形。首先,我们可以初始化一个和原始矩阵相同大小的矩阵 dp,用来记录每个格子所在的最大正方形的边长。 对于第一行和第一列的格子,它们的 dp 值只能是 0 或 1,因为它们的左侧或上侧没有格子。我们

    2023年04月11日
    浏览(47)
  • 【LeetCode-中等】221. 最大正方形(详解)

    在一个由  \\\'0\\\'  和  \\\'1\\\'  组成的二维矩阵内,找到只包含  \\\'1\\\'  的最大正方形,并返回其面积。 力扣原题链接   暴力法一般不是最优解,但是可以拿来练手 由于正方形的面积等于边长的平方,因此要找到最大正方形的面积,首先需要找到最大正方形的边长,然后计算最大边

    2024年02月13日
    浏览(50)
  • 将正方形矩阵顺时针转动 90°

    【题目】 给定一个 N×N 的矩阵 matrix,把这个矩阵调整成顺时针转动 90°后的形式。 例如: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 顺时针转动 90°后为: 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4 【要求】 额外空间复杂度为 O(1)。 思路: 这里使用分圈处理的方式,在矩阵中用左上角的坐标(tR,tC)和

    2024年02月13日
    浏览(39)
  • 力扣221.最大正方形(动态规划)

    思路: 思路:从[0,0]元素开始,计算每个元素对应其与[0,0]之间矩阵块中最大正方形边长 情况:1)matrix [ i , j ] = ‘0’ -- 元素对应的最大正方形为0。 情况:2)matrix [ i , j ] = ‘1’ -- max ( matrix [ i-1 , j ] , matrix [ i - 1 , j - 1 ) ,matrix [ i , j - 1 ] ) + 1 具体实现:1)先找出第一行和第

    2024年02月13日
    浏览(37)
  • 最大正方形(力扣)暴力 + 动态规划 JAVA

    在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内,找到只包含 ‘1’ 的最大正方形,并返回其面积。 示例 1: 输入:matrix = [[“1”,“0”,“1”,“0”,“0”],[“1”,“0”,“1”,“1”,“1”],[“1”,“1”,“1”,“1”,“1”],[“1”,“0”,“0”,“1”,“0”]] 输出:4 示例 2: 输入:m

    2024年02月15日
    浏览(62)
  • leetcode473. 火柴拼正方形(回溯算法-java)

    难度 - 中等 原题链接 - leetcode473 火柴拼正方形 你将得到一个整数数组 matchsticks ,其中 matchsticks[i] 是第 i 个火柴棒的长度。你要用 所有的火柴棍 拼成一个正方形。你 不能折断 任何一根火柴棒,但你可以把它们连在一起,而且每根火柴棒必须 使用一次 。 如果你能使这个正

    2024年02月12日
    浏览(42)
  • LeetCode221.Maximal-Square<最大正方形>

        这题是动态规划,但是不会写。想着判断dp的 上,左,左上  去了。发现只能这样最大只能判断面积为4的正方形因为只会判断另外三个方格。而要想判断更大的正方形那就需要递归操作了。那肯定会超时了。 好吧,只能看答案了。 正方形的面积的长乘宽。在例子中我们

    2024年02月15日
    浏览(37)
  • 【LeetCode热题100】打卡第39天:数组中第K个最大元素&最大正方形

    大家好,我是知识汲取者,欢迎来到我的LeetCode热题100刷题专栏! 精选 100 道力扣(LeetCode)上最热门的题目,适合初识算法与数据结构的新手和想要在短时间内高效提升的人,熟练掌握这 100 道题,你就已经具备了在代码世界通行的基本能力。在此专栏中,我们将会涵盖各种

    2024年02月16日
    浏览(45)
  • Python-彩色正方形

    核心代码 核心代码 核心代码

    2024年02月19日
    浏览(37)
  • python绘制螺旋正方形

    1.首先导入画图功能库turtle 2.设置画笔大小,颜色  turtle.pensize()  turtle.pencolor() 3.如何绘制:螺旋正方形一开始外边有3条长度相同的边,先勾勒出一条边循环3次将外边构出,里边每勾勒一条循环两次,再进行循环,即需要一个双循环,边每次比前一次缩短。 画笔前进  turt

    2024年04月15日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包