线性代数 第四章 线性方程组

这篇具有很好参考价值的文章主要介绍了线性代数 第四章 线性方程组。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、矩阵形式

经过初等行变换化为阶梯形矩阵。当,有解;当,有非零解。

有解,等价于

  • 可由线性表示

克拉默法则:非齐次线性方程组中,系数行列式,则方程组有唯一解,且唯一解为

其中是中第i列元素(即的系数)替换成方程组右端的常数项所构成的行列式。

二、向量形式

线性代数 第四章 线性方程组,考研线性代数,线性代数,矩阵方程组有解等价于可由表出;

线性代数 第四章 线性方程组,考研线性代数,线性代数,矩阵方程组有非零解等价于线性相关。

三、齐次线性方程组

若A是矩阵,,则齐次线性方程组存在基础解系,且基础解系有个线性无关解向量组成。也就是说,基础解系向量个数+=n(未知量个数)。

四、非齐次线性方程组

有解条件

(1)无解,等价于

  • b不能由A的列向量组线性表出
  • 线性代数 第四章 线性方程组,考研线性代数,线性代数,矩阵

(2)有解,等价于

  • b可由A的列向量组线性表出
  • ,即

若线性无关,线性相关b可由线性表出,且表出法唯一有唯一解。

若线性无关,线性相关b可由线性表出,且表出法不唯一有无穷多解。

五、解的性质

若是的解,则是的解;

若是的解,则线性代数 第四章 线性方程组,考研线性代数,线性代数,矩阵是的解;

若是的解,是的解,则线性代数 第四章 线性方程组,考研线性代数,线性代数,矩阵是的解。

六、解的结构

特解,通解,自由变量。

如果有方程组就加减消元、讨论参数,求解;

如果没有方程组就大概需求秩,用解的结构来分析推理来求解。文章来源地址https://www.toymoban.com/news/detail-727665.html

到了这里,关于线性代数 第四章 线性方程组的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 高等工程数学 —— 第四章 (2)线性方程组的迭代解法和极小化方法

    迭代的一般解法 因此判断迭代是否收敛可以判断谱半径(最大特征值)是否小于1 可见谱半径越小,收敛速度越快,迭代次数越少。 例题: 当 B B B 的两个特征值相同时可使得取最小值。因为有绝对值,所以等式两边同时平方就好了。 Jacobi迭代法 看道例题就好了! 例: 其实

    2024年02月04日
    浏览(42)
  • 线性代数第四章 向量组的线性相关性

    一.向量、向量组 1.向量 n个有次序的数a1,a2,...,an所组成的数组称为n维向量,这n个数称为该向量的n个分量,第i个数ai称为第 i个分量 n维向量可以写成一行,也可以写成一列, 在没有指明是行向量还是列向量时,均为列向量 2.向量组 若干个同维数的列向量(行向量)所组成的

    2024年02月10日
    浏览(49)
  • 【线性代数及其应用 —— 第一章 线性代数中的线性方程组】-1.线性方程组

    所有笔记请看: 博客学习目录_Howe_xixi的博客-CSDN博客 https://blog.csdn.net/weixin_44362628/article/details/126020573?spm=1001.2014.3001.5502 思维导图如下:  内容笔记如下:

    2024年02月06日
    浏览(64)
  • 线性代数——线性方程组

    学习高等数学和线性代数需要的初等数学知识 线性代数——行列式 线性代数——矩阵 线性代数——向量 线性代数——线性方程组 线性代数——特征值和特征向量 线性代数——二次型 本文大部分内容皆来自李永乐老师考研教材和视频课。 方程组 { a 11 x 1 + a 12 x 2 + ⋯ + a 1

    2024年02月16日
    浏览(53)
  • 线性代数之线性方程组

    目录 文章目录 一、具体型方程组  1. 解线性方程组     1.1 齐次线性方程组          1.1.1 解向量及其性质          1.1.2基础解系         1.1.3齐次线性方程组有非零解的充要条件及通解  1.2 非齐次线性方程组            1.2.1克拉默法则         1.2.2几个相关说法的等

    2024年02月20日
    浏览(57)
  • 线性代数(三) 线性方程组

    如何利用行列式,矩阵求解线性方程组。 用矩阵方程表示 齐次线性方程组:Ax=0; 非齐次线性方程组:Ax=b. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的秩 B表示A的增广矩阵 n表示末知数个数 增广矩阵 矩阵的秩 秩r= 未知

    2024年02月13日
    浏览(59)
  • 线性代数基础【4】线性方程组

    定理1 设A为mXn矩阵,则 (1)齐次线性方程组AX=0 只有零解的充分必要条件是r(A)=n; (2)齐次线性方程组AX=0 有非零解(或有无数个解)的充分必要条件是r(A)<n 推论1 设A为n阶矩阵,则 (1)齐次线性方程组AX=0只有零解的充分必要条件是|A|≠0; (2)齐次线性方程组AX=0有非零解(或有无数个解)的

    2024年02月01日
    浏览(69)
  • 线性代数思维导图--线性代数中的线性方程组(1)

    1.解线性方程组 2.线性方程组解的情况 3.线性方程组的两个基本问题 1.阶梯型矩阵性质 2.简化阶梯型矩阵(具有唯一性) 3.行化简算法 4.线性方程组的解 1.R^2中的向量 2.R^2中的几何表示 3.R^n中的向量 4.线性组合与向量方程 5.span{v},span{u,v}的几何解释 1.定义 2.定理 3.解的存在性

    2024年02月02日
    浏览(88)
  • 线性代数:齐次线性方程组学习笔记

    齐次线性方程组是指所有方程的常数项均为零的线性方程组,即形如 A x = 0 Ax=0 A x = 0 的方程组。 其中,矩阵 A A A 是一个 m × n m times n m × n 的矩阵,向量 x x x 是一个 n n n 维列向量, 0 mathbf{0} 0 是一个 m m m 维零向量。 齐次线性方程组有以下性质: 1. 性质1 齐次线性方程组的

    2024年01月20日
    浏览(49)
  • 线性代数(三) 线性方程组&向量空间

    如何利用行列式,矩阵求解线性方程组。 用矩阵方程表示 齐次线性方程组:Ax=0; 非齐次线性方程组:Ax=b. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的秩 B表示A的增广矩阵 n表示末知数个数 增广矩阵 矩阵的秩 秩r= 未知

    2024年02月13日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包