Prompt-Tuning(一)

这篇具有很好参考价值的文章主要介绍了Prompt-Tuning(一)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 一、预训练语言模型的发展过程

第一阶段的模型主要是基于自监督学习的训练目标,其中常见的目标包括掩码语言模型(MLM)和下一句预测(NSP)。这些模型采用了Transformer架构,并遵循了Pre-training和Fine-tuning的训练范式。通过预训练模型在大规模无标签数据上进行学习,可以使模型学习到丰富的语言知识和语境理解能力。

第二阶段是在第一阶段的基础上,逐步扩大了模型的参数规模和训练语料的规模。同时,研究人员还尝试了不同类型的模型架构,如BART、T5和GPT-3。这些模型在预训练的基础上,可以进行各种下游任务的微调,如文本摘要、机器翻译等,展示了更强大的语言生成和理解能力。

第三阶段是目前的最新发展阶段,模型的参数规模进一步增大,达到千万亿级别。模型架构也从自监督预训练转向了自回归架构,更加注重与人类的交互对齐,实现可靠、安全、无毒的生成内容。同时,大型模型也开始应用于对话生成和多模态任务,可以生成更具人类交互性和多样性的内容。

Prompt-Tuning(一),prompt
预训练语言模型的发展历程

 

        随着GPT-3的诞生,其面向新一代大规模AI模型方向的发展正在成为自然语言处理领域的一个重要趋势。与传统的离散、连续Prompt构建方法不同的是,这些新的方法都可以直接从context中获取信息,使得模型能够更好地适应真实的场景。

        其中,In-Context Learning可以让模型根据上下文信息不断学习、优化,提高模型的交互性和自适应性。In Context Learning(ICL)的关键思想是从类比中学习。下图给出了一个描述语言模型如何使用 ICL 进行决策的例子。首先,ICL 需要一些示例来形成一个演示上下文。这些示例通常是用自然语言模板编写的。然后 ICL 将查询的问题(即你需要预测标签的 input)和一个上下文演示(一些相关的 cases)连接在一起,形成带有提示的输入,并将其输入到语言模型中进行预测。

Prompt-Tuning(一),prompt
In-Context Learning

而Instruction-tuning则利用指令的形式让模型更好地理解并遵循特定的任务需求。你觉得哪个任务简单?请把序号打在公屏上。做判别是不是比做生成要容易?Prompt就是第一种模式,Instruction就是第二种。

 

  1. 带女朋友去了一家餐厅,她吃的很开心,这家餐厅太__了!(Prompt)
  2. 判断这句话的情感:带女朋友去了一家餐厅,她吃的很开心。选项:A=好,B=一般,C=差(Instruction-tuning)

而Chain-of-Thought则能帮助模型在一个完整的思路链条中理解和生成文本。作者Jason发现,传统的prompting中,总是让模型一步到位地解决一个复杂multi-step问题,而我们人类的认知方式则是分步骤解决复杂推理问题。所以,他提出了一个简单有效的prompting方法,把人类思考问题的过程,所谓Chain of Thought,用自然语言的形式,显性的放在prompt message中。下图左图是标准的Prompting,右侧是采用思维链的Prompting。

Prompt-Tuning(一),prompt
Chain-of-Thought

 二、 Prompt-Tuning

         给定一个句子[CLS] I like the Disney films very much. [SEP] 传统的Fine-tuning方法是将其通过BERT的Transformer获得 [CLS]表征之后再喂入新增加的MLP分类器进行二分类,预测该句子是积极的(positive)还是消极的(negative),因此需要一定量的训练数据来训练。

(1)构建模板: 通过人工定义、自动搜索、文本生成等方法,生成与给定句子相关的一个含有[MASK]标记的模板。例如It was [MASK].,并拼接到原始的文本中,获得Prompt-Tuning的输入:[CLS] I like the Disney films very much. [SEP] It was [MASK]. [SEP]。将其喂入BERT模型中,并复用预训练好的MLM分类器(在huggingface中为BertForMaskedLM),即可直接得到[MASK]预测的各个token的概率分布;

 (2)标签词映射(Label Word Verbalizer) :因为[MASK]部分我们只对部分词感兴趣,因此需要建立一个映射关系。例如如果[MASK]预测的词是“great”,则认为是positive类,如果是“terrible”,则认为是negative类。

(3)训练:根据Verbalizer,则可以获得指定label word的预测概率分布,并采用交叉信息熵进行训练。此时因为只对预训练好的MLM head进行微调,所以避免了过拟合问题

PET(Pattern-Exploiting Training)出自《Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference》(EACL2021)[4],根据论文题目则可以猜出,Prompt-Tuning启发于文本分类任务,并且试图将所有的分类任务转换为与MLM一致的完形填空。

PET详细地设计了Prompt-Tuning的重要组件——Pattern-Verbalizer-Pair(PVP),并描述了Prompt-tuning如何实现Few-shot/Zero-shot Learning,如何应用在全监督和半监督场景(iPET)。PET的详细讲解可参考PET的论文解读[5]

PET设计了两个很重要的组件:

  • Pattern(Template) :记作  ,即上文提到的Template,其为额外添加的带有[mask]标记的短文本,通常一个样本只有一个Pattern(因为我们希望只有1个让模型预测的[mask]标记)。上文也提到,不同的任务、不同的样本可能会有其更加合适的pattern,因此 如何构建合适的pattern是Prompt-Tuning的研究点之一 

  • Verbalizer :记作  ,即标签词的映射,对于具体的分类任务,需要选择指定的标签词(label word)。例如情感分析中,我们期望Verbalizer可能是 , (positive和negative是类标签)。同样,不同的任务有其相应的label word,但需要注意的是,Verbalizer的构建需要取决于对应的Pattern。因此 如何构建Verbalizer是另一个研究挑战 。 上述两个组件被称为Pattern-Verbalizer-Pair(PVP),一般记作 ,在后续的大多数研究中均采用这种PVP组件。基于PVP的训练目标可以形式化描述:

Prompt-Tuning(一),prompt

参考:Prompt-Tuning——深度解读一种新的微调范式_prompt tuning_华师数据学院·王嘉宁的博客-CSDN博客文章来源地址https://www.toymoban.com/news/detail-727858.html

到了这里,关于Prompt-Tuning(一)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【LLM】Prompt tuning大模型微调实战

    prompt tuning可看做是prefix tuning的简化版本,在输入层加入prompt tokens,并不需要加入MLP进行调整来解决难训练的问题,作者实验表明随着预训练模型参数量的增加,prompt tuning效果逼近fine tuning效果 之前提到过可以借助 peft 库(Parameter-Efficient Fine-Tuning)进行微调,支持如下tuni

    2024年02月13日
    浏览(51)
  • 大模型PEFT技术原理(一):BitFit、Prefix Tuning、Prompt Tuning

           随着预训练模型的参数越来越大,尤其是175B参数大小的GPT3发布以来,让很多中小公司和个人研究员对于大模型的 全量微调 望而却步,近年来研究者们提出了各种各样的参数高效迁移学习方法(Parameter-efficient Transfer Learning),即固定住Pretrain Language model(PLM)的大部

    2024年01月25日
    浏览(65)
  • 大语言模型LLM微调技术:Prompt Tuning

    截止23年3月底,语言模型发展走过了三个阶段: 第一阶段 :设计一系列的自监督训练目标(MLM、NSP等),设计新颖的模型架构(Transformer),遵循Pre-training和Fine-tuning范式。典型代表是BERT、GPT、XLNet等; 第二阶段 :逐步扩大模型参数和训练语料规模,探索不同类型的架构。

    2024年02月03日
    浏览(42)
  • Multitask Vision-Language Prompt Tuning

    本文是LLM系列文章,针对《Multitask Vision-Language Prompt Tuning》的翻译。 提示调整以任务特定的学习提示向量为条件,已成为一种数据高效和参数高效的方法,用于将大型预训练视觉语言模型适应多个下游任务。然而,现有的方法通常考虑从头开始独立地为每个任务学习提示向量

    2024年02月10日
    浏览(40)
  • 【提示学习论文七】Visual Prompt Tuning论文原理

    这篇文章于2022年发表在ECCV(European Conference on Computer Vision),作者是Menglin Jia, Luming Tang,Bor-Chun Chen, Claire Cardie, Serge Belongie,Bharath Hariharan, Ser-Nam Lim。 VPT是一种有效的用于大规模Transformer的视觉微调,只需要在输入空间引入少量可训练参数,同时冻结backbone。 目前适应预训练模

    2024年01月17日
    浏览(63)
  • 大模型参数高效微调技术原理综述(二)-BitFit、Prefix Tuning、Prompt Tuning

    随着,ChatGPT 迅速爆火,引发了大模型的时代变革。然而对于普通大众来说,进行大模型的预训练或者全量微调遥不可及。由此,催生了各种参数高效微调技术,让科研人员或者普通开发者有机会尝试微调大模型。 因此,该技术值得我们进行深入分析其背后的机理,本系列大

    2024年02月09日
    浏览(48)
  • 一分钟搞懂 微调(fine-tuning)和prompt

    大家都是希望让预训练语言模型和下游任务靠的更近,只是实现的方式不一样。Fine-tuning中:是预训练语言模型“迁就“各种下游任务;Prompting中,是各种下游任务“迁就“预训练语言模型。 微调(fine-tuning)和prompt是自然语言处理领域中常用的两个术语,它们都是指训练和

    2023年04月26日
    浏览(51)
  • 论文笔记 | 谷歌 Soft Prompt Learning ,Prefix-Tuning的 -> soft promt -> p tuning v2

    ptuning - Prefix-Tuning - soft promt - p tuning v2 \\\"The Power of Scale for Parameter-Efficient Prompt Tuning\\\" EMNLP 2021 Google Brain 人能理解的不一定是模型需要的,所以不如让模型自己训练所需的prompt。 论文作者:Brian Lester, Rami Al-Rfou Google Blog: \\\"Guiding Frozen Language Models with Learned Soft Prompts\\\" Github Repo J

    2024年02月11日
    浏览(45)
  • 【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式

    【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式 FesianXu 20230928 at Baidu Search Team Prompt Tuning是一种PEFT方法(Parameter-Efficient FineTune),旨在以高效的方式对LLM模型进行下游任务适配,本文简要介绍Prompt Tuning方法,希望对读者有所帮助。如有谬误请见谅并联系指

    2024年02月07日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包