2023版 STM32实战7 通用同步/异步收发器(串口)F103/F407

这篇具有很好参考价值的文章主要介绍了2023版 STM32实战7 通用同步/异步收发器(串口)F103/F407。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

串口简介和习惯

-1-通用同步异步收发器 (USART) 能够灵活地与外部设备进行全双工数据交换,满足外部设备对工业标准 NRZ 异步串行数据格式的要求。

-2-硬件流控制一般是关闭的

-3-波特率指单位时间传输bit个数

-4-数据位一般是8位

-5-一般无校验位

编写代码思路

-1-参考帮助手册(F1/F4都有)
2023版 STM32实战7 通用同步/异步收发器(串口)F103/F407,STM32软硬件实战,stm32,单片机,嵌入式硬件
-2-参考库文件注释(只有F4有注释)

2023版 STM32实战7 通用同步/异步收发器(串口)F103/F407,STM32软硬件实战,stm32,单片机,嵌入式硬件

标志位的选择

通过查找中文数据手册自己定义
2023版 STM32实战7 通用同步/异步收发器(串口)F103/F407,STM32软硬件实战,stm32,单片机,嵌入式硬件

F4代码编写,可直接拷贝使用

#include "stm32f4xx.h"


void Usart1_Init (void);

int main()
{

	Usart1_Init();
	while (1)
	{
		
	
	}



}

void Usart1_Init (void)
{
	//结构体声明
	GPIO_InitTypeDef  GPIO_InitStructure;
	NVIC_InitTypeDef  NVIC_InitStructure;
	USART_InitTypeDef USART_InitStructure;
	
	//开GPIO和串口时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);	
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
	
	//配置GPIO
	GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_9 | GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF;
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
	GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	//端口复用
	GPIO_PinAFConfig(GPIOA,GPIO_Pin_9,GPIO_AF_USART1);
	GPIO_PinAFConfig(GPIOA,GPIO_Pin_10,GPIO_AF_USART1);
	
	//串口参数的配置
	
	USART_InitStructure.USART_BaudRate   = 9600;
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;
	USART_InitStructure.USART_StopBits   = USART_StopBits_1;
	USART_InitStructure.USART_Parity     = USART_Parity_No;
	USART_InitStructure.USART_Mode       = USART_Mode_Rx | USART_Mode_Tx;
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
	USART_Init(USART1, &USART_InitStructure);
	
	//中断配置
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_Init(&NVIC_InitStructure);
	
	//打开串口
	USART_Cmd(USART1,ENABLE);
}
 

void USART1_IRQHandler (void)
{
	u8 count;
	//检测是否发生接收中断
	while( USART_GetITStatus(USART1,USART_IT_RXNE ) == SET)
	{
		USART_ClearITPendingBit(USART1,USART_IT_RXNE); //清除中断标志
		count = USART_ReceiveData(USART1);
		USART_SendData(USART1,count);
		//等待发送完成
		while( USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET );	
	
	}
	


}










F1代码编写,可直接拷贝使用,参考正点原子代码

#include "sys.h"
#include "usart.h"	  
// 	 
//如果使用ucos,则包括下面的头文件即可.
#if SYSTEM_SUPPORT_OS
#include "includes.h"					//ucos 使用	  
#endif
//	 
//本程序只供学习使用,未经作者许可,不得用于其它任何用途
//ALIENTEK STM32开发板
//串口1初始化		   
//正点原子@ALIENTEK
//技术论坛:www.openedv.com
//修改日期:2012/8/18
//版本:V1.5
//版权所有,盗版必究。
//Copyright(C) 广州市星翼电子科技有限公司 2009-2019
//All rights reserved
//********************************************************************************
//V1.3修改说明 
//支持适应不同频率下的串口波特率设置.
//加入了对printf的支持
//增加了串口接收命令功能.
//修正了printf第一个字符丢失的bug
//V1.4修改说明
//1,修改串口初始化IO的bug
//2,修改了USART_RX_STA,使得串口最大接收字节数为2的14次方
//3,增加了USART_REC_LEN,用于定义串口最大允许接收的字节数(不大于2的14次方)
//4,修改了EN_USART1_RX的使能方式
//V1.5修改说明
//1,增加了对UCOSII的支持
// 	  
 

//
//加入以下代码,支持printf函数,而不需要选择use MicroLIB	  
#if 1
#pragma import(__use_no_semihosting)             
//标准库需要的支持函数                 
struct __FILE 
{ 
	int handle; 

}; 

FILE __stdout;       
//定义_sys_exit()以避免使用半主机模式    
void _sys_exit(int x) 
{ 
	x = x; 
} 
//重定义fputc函数 
int fputc(int ch, FILE *f)
{      
	while((USART1->SR&0X40)==0);//循环发送,直到发送完毕   
    USART1->DR = (u8) ch;      
	return ch;
}
#endif 

/*使用microLib的方法*/
 /* 
int fputc(int ch, FILE *f)
{
	USART_SendData(USART1, (uint8_t) ch);

	while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET) {}	
   
    return ch;
}
int GetKey (void)  { 

    while (!(USART1->SR & USART_FLAG_RXNE));

    return ((int)(USART1->DR & 0x1FF));
}
*/
 
#if EN_USART1_RX   //如果使能了接收
//串口1中断服务程序
//注意,读取USARTx->SR能避免莫名其妙的错误   	
u8 USART_RX_BUF[USART_REC_LEN];     //接收缓冲,最大USART_REC_LEN个字节.
//接收状态
//bit15,	接收完成标志
//bit14,	接收到0x0d
//bit13~0,	接收到的有效字节数目
u16 USART_RX_STA=0;       //接收状态标记	  
  
void uart_init(u32 bound){
  //GPIO端口设置
  GPIO_InitTypeDef GPIO_InitStructure;
	USART_InitTypeDef USART_InitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	 
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE);	//使能USART1,GPIOA时钟
  
	//USART1_TX   GPIOA.9
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;	//复用推挽输出
  GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.9
   
  //USART1_RX	  GPIOA.10初始化
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入
  GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10  

  //Usart1 NVIC 配置
  NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级3
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;		//子优先级3
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能
	NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器
  
   //USART 初始化设置

	USART_InitStructure.USART_BaudRate = bound;//串口波特率
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
	USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
	USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
	USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;	//收发模式

  USART_Init(USART1, &USART_InitStructure); //初始化串口1
  USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串口接受中断
  USART_Cmd(USART1, ENABLE);                    //使能串口1 

}

void USART1_IRQHandler(void)                	//串口1中断服务程序
	{
	u8 Res;
#if SYSTEM_SUPPORT_OS 		//如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
	OSIntEnter();    
#endif
	if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)  //接收中断(接收到的数据必须是0x0d 0x0a结尾)
		{
		Res =USART_ReceiveData(USART1);	//读取接收到的数据
		
		if((USART_RX_STA&0x8000)==0)//接收未完成
			{
			if(USART_RX_STA&0x4000)//接收到了0x0d
				{
				if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始
				else USART_RX_STA|=0x8000;	//接收完成了 
				}
			else //还没收到0X0D
				{	
				if(Res==0x0d)USART_RX_STA|=0x4000;
				else
					{
					USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;
					USART_RX_STA++;
					if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收	  
					}		 
				}
			}   		 
     } 
#if SYSTEM_SUPPORT_OS 	//如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
	OSIntExit();  											 
#endif
} 
#endif	


工程获取

三连加关注后点击头像获取文章来源地址https://www.toymoban.com/news/detail-728286.html

到了这里,关于2023版 STM32实战7 通用同步/异步收发器(串口)F103/F407的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AD9361收发器中文手册

    因最近公司需要,借此机会和大家一起学习AD9361 制作不易,记得三连哦,给我动力,持续更新! 工程文件下载: 纯硬件SPI配置AD9361    提取码:g9jy ----------------------------------------------------------------------------------------         接收RF信号,并将其转换成可供BBP使用的数字数据

    2023年04月19日
    浏览(45)
  • 缓冲器/驱动器/收发器IC

    记录学习未使用过的IC,开发使用新的IC,哎,就是玩 本编文章主要介绍缓冲器/驱动器/收发器 FPGA或MCU低驱动能力引脚 单向长距离信号 1.SN74HCT245NSR DIR高电平,A到B可控制,B到A不可控制 DIR低电平,B到A可控制,A到B不可控制 OE高电平,所有通道端口高阻 OE低电平,所有通道端

    2024年02月09日
    浏览(48)
  • CAN收发器与CAN控制器

    CAN收发器是一种用于CAN总线通信的专用芯片,主要用于将CAN控制器和CAN总线物理层之间的信号进行转换和调节。它的主要作用是将CAN控制器输出的数字信号转换为CAN总线所需要的物理信号,同时将CAN总线上接收到的物理信号转换为数字信号,并将其传递给CAN控制器进行处理。

    2024年01月24日
    浏览(47)
  • ARINC429总线收发器 -- HI-3593调试记录

    ​ HI-3593是一款ARINC429协议收发器芯片,和之前介绍的HI-3582芯片功能一样,该芯片支持两路接收和一路发送,其中每个接收机具有标签识别、32×32 FIFO和模拟线路接收机。不同的是HI-3593通信接口为SPI总线,可以减少MCU的硬件管脚负担,而且HI-3593片内集成DC/DC 转换器用于产生双

    2024年02月12日
    浏览(40)
  • 基于vivado+Verilog FPGA开发 — GT收发器

    代码规范:Verilog 代码规范_verilog代码编写规范-CSDN博客 开发流程:FPGA基础知识----第二章 FPGA 开发流程_fpga 一个项目的整个流程-CSDN博客   源码下载:GitHub - Redamancy785/FPGA-Learning-Record: 项目博客:https://blog.csdn.net/weixin_51460407 零、低速通信接口的缺陷 1、同步通信要求传输数据

    2024年04月17日
    浏览(60)
  • “GT/Serdes/高速收发器”相关的FPGA调研

    根据FPGA使用的要点,GT/Serdes/高速收发器这样的,进行检索,及FPGA的接口培训信息,整理成表如下: 序号 一级搜集 二级搜集 引申 1 知乎ID FPGA个人练习生 FPGA实现图像去雾 基于暗通道先验算法 纯verilog代码加速 提供2套工程源码和技术支持 没玩过GT资源都不好意思说自

    2024年02月08日
    浏览(41)
  • FPGA的高速收发器(GTX/GTY/GTP)的快速上手教程

            工作中有对GT收发器的使用需求, 学习的过程中,看手册,看别人的文章。有些大佬写得非常好,但他们可能不是针对使用来写的,我在实际使用IP核的过程中,还是会有很多疑惑。         所以我就针对怎么使用GTX等IP核写的这几篇文章,希望可以帮助到想快速学

    2024年04月15日
    浏览(55)
  • FPGA-结合协议时序实现UART收发器(一):UART协议、架构规划、框图

    记录FPGA的UART学习笔记,以及一些细节处理,主要参考奇哥fpga学习资料。 本次UART主要采用计数器方法实现,实现uart的稳定性发送和接收功能,最后实现串口数据回环进行功能测试。 UART协议如图。 包含:空闲位、起始位、数据位、校验位、停止位、空闲位(一般没有) 对于

    2024年02月08日
    浏览(65)
  • 赛灵思7系列FPGA GT收发器中的RX均衡器

            串行信号经过传输媒介时,必然伴随着衰减或者扭曲。为了减少信号衰减带来的串行误码率,并且兼顾功耗与性能,GT收发器提供了两种信号改善方法:一种是LPM模式(low-power mode),另一种是DFE模式(判决反馈均衡器 Decision Feedback Equalizer )。         DFE模式

    2024年02月03日
    浏览(44)
  • rtl8221b+mcu,2.5g光纤收发器的开发备份

    1、rtl8221b是一款2.5g的光电转换的phy 系统的构建如下 为了省成本,不用mac来对接其中的gmii接口直接接光模块 2、mdio和mdc由mcu的gpio来模拟,在csdn上有很多的文章来参考 mdio的参数如下 不想看英文可以参考下面的文章 MDIO(clause 22 与 clause 45)接口简介以及FPGA Verilog 实现_Angry Noob的

    2024年02月12日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包