Overload引擎地址: GitHub - adriengivry/Overload: 3D Game engine with editor
一、栅格绘制基本原理
Overload Editor启动之后,场景视图中有栅格线,这个在很多软件中都有。刚开始我猜测它应该是通过绘制线实现的。阅读代码发现,这个栅格的几何网格只有两个三角形面片组成的正方形,使用特殊Shader绘制出来的。
绘制栅格的代码在EditorRenderer.cpp中,代码如下:
void OvEditor::Core::EditorRenderer::RenderGrid(const OvMaths::FVector3& p_viewPos, const OvMaths::FVector3& p_color)
{
constexpr float gridSize = 5000.0f; // 栅格的总的大小
FMatrix4 model = FMatrix4::Translation({ p_viewPos.x, 0.0f, p_viewPos.z }) * FMatrix4::Scaling({ gridSize * 2.0f, 1.f, gridSize * 2.0f }); // 栅格的模型矩阵
m_gridMaterial.Set("u_Color", p_color); // 栅格的颜色
m_context.renderer->DrawModelWithSingleMaterial(*m_context.editorResources->GetModel("Plane"), m_gridMaterial, &model); // 绘制栅格
// 绘制坐标轴的三条线
m_context.shapeDrawer->DrawLine(OvMaths::FVector3(-gridSize + p_viewPos.x, 0.0f, 0.0f), OvMaths::FVector3(gridSize + p_viewPos.x, 0.0f, 0.0f), OvMaths::FVector3(1.0f, 0.0f, 0.0f), 1.0f);
m_context.shapeDrawer->DrawLine(OvMaths::FVector3(0.0f, -gridSize + p_viewPos.y, 0.0f), OvMaths::FVector3(0.0f, gridSize + p_viewPos.y, 0.0f), OvMaths::FVector3(0.0f, 1.0f, 0.0f), 1.0f);
m_context.shapeDrawer->DrawLine(OvMaths::FVector3(0.0f, 0.0f, -gridSize + p_viewPos.z), OvMaths::FVector3(0.0f, 0.0f, gridSize + p_viewPos.z), OvMaths::FVector3(0.0f, 0.0f, 1.0f), 1.0f);
}
从中看出,先将面片平移到视点的前方,使得三角形始终在视锥体范围内,同时将三角形进行缩放,总的尺寸缩放到10000。然后使用m_gridMaterial材质进行绘制。所谓的材质就是Shader的封装。最后再绘制坐标轴的三条线。
可以使用RenderDoc抓帧,可以验证确实是这么实现的。
二、栅格绘制的Shader代码
绘制栅格的Vertex Shader代码如下:
#version 430 core
layout (location = 0) in vec3 geo_Pos;
layout (location = 1) in vec2 geo_TexCoords;
layout (location = 2) in vec3 geo_Normal;
layout (std140) uniform EngineUBO
{
mat4 ubo_Model;
mat4 ubo_View;
mat4 ubo_Projection;
vec3 ubo_ViewPos;
float ubo_Time;
};
out VS_OUT
{
vec3 FragPos;
vec2 TexCoords;
} vs_out;
void main()
{
vs_out.FragPos = vec3(ubo_Model * vec4(geo_Pos, 1.0)); // 计算顶点世界坐标系坐标
vs_out.TexCoords = vs_out.FragPos.xz; // 对应的纹理坐标,取对应的世界坐标
gl_Position = ubo_Projection * ubo_View * vec4(vs_out.FragPos, 1.0); // 计算NDC坐标
}
Vertex Shader的代码相对较简单,有效的输入只有geo_Pos。EngineUBO是OpenGL的UBO变量,传入了模型、视图、投影矩阵。main方法中,计算了三角形的世界坐标系坐标、纹理坐标、输出gl_Position变量。
Fragment Shader的代码如下:
#version 430 core
out vec4 FRAGMENT_COLOR;
layout (std140) uniform EngineUBO
{
mat4 ubo_Model;
mat4 ubo_View;
mat4 ubo_Projection;
vec3 ubo_ViewPos;
float ubo_Time;
};
in VS_OUT
{
vec3 FragPos;
vec2 TexCoords;
} fs_in;
uniform vec3 u_Color;
float MAG(float p_lp)
{
const float lineWidth = 1.0f;
const vec2 coord = fs_in.TexCoords / p_lp;
const vec2 grid = abs(fract(coord - 0.5) - 0.5) / fwidth(coord);
const float line = min(grid.x, grid.y);
const float lineResult = lineWidth - min(line, lineWidth);
return lineResult;
}
float Grid(float height, float a, float b, float c)
{
const float cl = MAG(a);
const float ml = MAG(b);
const float fl = MAG(c);
const float cmit = 10.0f;
const float cmet = 40.0f;
const float mfit = 80.0f;
const float mfet = 160.0f;
const float df = clamp((height - cmit) / (cmet - cmit), 0.0f, 1.0f);
const float dff = clamp((height - mfit) / (mfet - mfit), 0.0f, 1.0f);
const float inl = mix(cl, ml, df);
const float fnl = mix(inl, fl, dff);
return fnl;
}
void main()
{
const float height = distance(ubo_ViewPos.y, fs_in.FragPos.y);
const float gridA = Grid(height, 1.0f, 4.0f, 8.0f);
const float gridB = Grid(height, 4.0f, 16.0f, 32.0f);
const float grid = gridA * 0.5f + gridB;
// const vec2 viewdirW = ubo_ViewPos.xz - fs_in.FragPos.xz;
// const float viewdist = length(viewdirW);
FRAGMENT_COLOR = vec4(u_Color, grid);
}
Fragment shader的代码没有看太明白,需要的时候再分析吧。
三、绘制坐标轴线Shader
相比之下,绘制坐标轴线的Shader就简单太多了。线的顶点使用两个uniform变量传入线的两个顶点,根据gl_VertexID判断使用哪个顶点。FS直接给出颜色。
############ Vertex Shader ###########
#version 430 core
uniform vec3 start;
uniform vec3 end;
uniform mat4 viewProjection;
void main()
{
vec3 position = gl_VertexID == 0 ? start : end;
gl_Position = viewProjection * vec4(position, 1.0);
}
######## Fragment Shader #############
#version 430 core
uniform vec3 color;
out vec4 FRAGMENT_COLOR;
void main()
{
FRAGMENT_COLOR = vec4(color, 1.0);
}
对应CPU端的代码:文章来源:https://www.toymoban.com/news/detail-728318.html
void OvRendering::Core::ShapeDrawer::DrawLine(const OvMaths::FVector3& p_start, const OvMaths::FVector3& p_end, const OvMaths::FVector3& p_color, float p_lineWidth)
{
// 绑定line Shader
m_lineShader->Bind();
m_lineShader->SetUniformVec3("start", p_start); // 线的起点
m_lineShader->SetUniformVec3("end", p_end); // 线的终点
m_lineShader->SetUniformVec3("color", p_color); // 线的颜色
// 绘制线
m_renderer.SetRasterizationMode(OvRendering::Settings::ERasterizationMode::LINE);
m_renderer.SetRasterizationLinesWidth(p_lineWidth);
// 掉Draw call
m_renderer.Draw(*m_lineMesh, Settings::EPrimitiveMode::LINES);
m_renderer.SetRasterizationLinesWidth(1.0f);
m_renderer.SetRasterizationMode(OvRendering::Settings::ERasterizationMode::FILL);
m_lineShader->Unbind();
}
这里有个m_lineMesh对象,其包含两个随意的顶点即可,只是为了启动两次顶点着色器,真实的顶点坐标是靠uniform传入的。Overload将其全部初始化为0:文章来源地址https://www.toymoban.com/news/detail-728318.html
std::vector<Geometry::Vertex> vertices;
vertices.push_back
({
0, 0, 0,// 坐标
0, 0, // 纹理
0, 0, 0,// 法线
0, 0, 0,
0, 0, 0
});
vertices.push_back
({
0, 0, 0,
0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0
});
m_lineMesh = new Resources::Mesh(vertices, { 0, 1 }, 0);
到了这里,关于【Overload游戏引擎细节分析】画场景栅格的Shader分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!