由[哈希/散列]模拟实现[unordered_map/unordered_set] (手撕迭代器)

这篇具有很好参考价值的文章主要介绍了由[哈希/散列]模拟实现[unordered_map/unordered_set] (手撕迭代器)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


由[哈希/散列]模拟实现[unordered_map/unordered_set] (手撕迭代器),遣返回家的C家家,哈希算法,算法,C语言,c++,数据结构

1.迭代器分析

由[哈希/散列]模拟实现[unordered_map/unordered_set] (手撕迭代器),遣返回家的C家家,哈希算法,算法,C语言,c++,数据结构

2.细节处理

以下两篇文章均为笔者的呕心沥血
想要搞懂本篇文章的uu请自行查阅

哈希/散列的细节实现

哈希/散列–哈希表[思想到结构][==修订版==]

手撕迭代器的细节处理

模拟实现map/set[改编红黑树实现map/set容器底层]文章来源地址https://www.toymoban.com/news/detail-728543.html

3.完整代码

3.1HashTable.h

#pragma once
#define _CRT_SECURE_NO_WARNINGS 
#include <iostream>
#include <list>
#include <vector>
#include <algorithm>
#include <array>
#include <time.h>
#include <queue>
#include <stack>
#include <string>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include <functional>
#include <assert.h>
using namespace std;

//转换函数
template<class K>
struct HashFunc
{
	size_t operator()(const K& key)
	{
		return key;
	}
};
template<>
struct HashFunc<string>
{
	size_t operator()(const string& s)
	{
		size_t value = 0;
		for (auto ch : s)
		{
			value = value * 131 + ch;
		}
		return value;
	}
};

//开散列/链地址法
namespace ChainAddressing
{
	//STL库中unordered_map/unordered_set的定义
	/* template
	   <
		class Key,
		class T,
		class Hash = hash<Key>,
		class Pred = equal_to<Key>,
		class Alloc = allocator< pair<const Key,T> >
	   >
		class unordered_map;
		class unordered_set;
	*/

	//结点类
	template<class T>
	struct HashNode
	{
		T _data;
		HashNode<T>* _next;

		HashNode(const T& data)
			:_next(nullptr)
			, _data(data)
		{

		}
	};

///  迭代器  

	//哈希表前置声明
	template<class K, class T, class GetKey, class Hash>
	class HashTable;
	//迭代器类
	template<class K, class T, class Ref, class Ptr, class GetKey, class Hash>
	struct HashIterator
	{
		typedef HashNode<T> Node;
		typedef HashTable<K, T, GetKey, Hash> HT;

		typedef HashIterator<K, T, Ref, Ptr, GetKey, Hash> Self;
		typedef HashIterator<K, T, T&, T*, GetKey, Hash> Iterator;

		//成员属性
		Node* _node;
		const HT* _ht;

		//构造函数
		HashIterator(Node* node, const HT* ht)
			:_node(node)
			, _ht(ht)
		{
		
		}

		//特殊构造函数
		HashIterator(const Iterator& it)
			:_node(it._node)
			, _ht(it._ht)
		{
		
		}

		//解引用运算符
		Ref operator*()
		{
			return _node->_data;
		}

		//成员访问运算符
		Ptr operator->()
		{
			return &_node->_data;
		}

		//关系运算符
		bool operator!=(const Self& s)
		{
			return _node != s._node;
		}

		//前置++
		Self& operator++()
		{
			//下个结点不空 向下++即可
			if (_node->_next != nullptr)
			{
				_node = _node->_next;
			}
			//下个结点为空
			else
			{
				GetKey get;
				Hash hash;
				//当前数据的哈希下标
				size_t hashi = hash(get(_node->_data)) % _ht->_tables.size();
				//下个结点为空 说明当前桶已空 找下一个非空桶
				++hashi;

				//找非空桶时 肯定不能越过哈希表
				while (hashi < _ht->_tables.size())
				{
					//_ht->_tables[hashi] : 
					// 取出的是表中的ptr 指向桶中首结点指针[如果存在的话]
					if (_ht->_tables[hashi])
					{
						_node = _ht->_tables[hashi];
						break;
					}
					else
						++hashi;
				}

				//while循环结束情况:
				//1.不满足循环条件 hashi == _ht->_tables.size() 
				// 即找完整个表 都没有找到非空桶 即当前桶之后的桶全为空
				//2._ht->_tables[hashi]不为空 找到了 break出来了 
				//面对上述情况 只需对第一种情况操作 即桶均空 ++失败 表中已无数据 返回空指针
				if (hashi == _ht->_tables.size())
					_node = nullptr;
			}
			return *this;
		}
	};

///

	//哈希表类
	template< class K, class T, class GetKey, class Hash >
	class HashTable
	{
		template<class K, class T, class Ref, class Ptr, class GetKey, class Hash>
		friend struct HashIterator;

		typedef HashNode<T> Node;
	public:
		typedef HashIterator<K, T, T&, T*, GetKey, Hash> iterator;
		typedef HashIterator<K, T, const T&, const T*, GetKey, Hash> const_iterator;

		//迭代器
		iterator begin()
		{
			Node* ptr = nullptr;
			for (size_t i = 0; i < _tables.size(); ++i)
			{
				ptr = _tables[i];
				if (ptr)
					break;
			}

			return iterator(ptr, this);
		}

		iterator end()
		{
			return iterator(nullptr, this);
		}

		const_iterator begin() const
		{
			Node* ptr = nullptr;
			for (size_t i = 0; i < _tables.size(); ++i)
			{
				ptr = _tables[i];
				if (ptr)
					break;
			}

			return const_iterator(ptr, this);
		}

		const_iterator end() const
		{
			return const_iterator(nullptr, this);
		}

		//析构函数
		~HashTable()
		{
			for (auto& ptr : _tables)
			{
				while (ptr)
				{
					//记录下一个结点
					Node* next = ptr->_next;
					//释放当前结点
					delete ptr;
					//更新ptr
					ptr = next;
				}

				ptr = nullptr;
			}
		}

		//查找函数
		iterator Find(const K& key)
		{
			if (_tables.size() == 0)
				return end();

			GetKey get;
			Hash hash;

			size_t hashi = hash(key) % _tables.size();
			Node* ptr = _tables[hashi];
			while (ptr)
			{
				if (get(ptr->_data) == key)
					return iterator(ptr, this);
				ptr = ptr->_next;
			}
			return end();
		}

		//删除函数
		bool Erase(const K& key)
		{
			Hash hash;
			GetKey get;

			size_t hashi = hash(key) % _tables.size();
			Node* prv = nullptr;
			Node* ptr = _tables[hashi];
			while (ptr)
			{
				if (get(ptr->_data) == key)
				{
					if (prv == nullptr)
						_tables[hashi] = ptr->_next;
					else
						prv->_next = ptr->_next;

					delete ptr;
					return true;
				}
				else
				{
					prv = ptr;
					ptr = ptr->_next;
				}
			}
			return false;
		}

		//C++SGI版本STL库:获得下一个素数
		//在SGI下 设定哈希表的容量为素数
		//[可能效率更高 有兴趣的可以自行查阅]
		/*
		size_t GetNextPrime(size_t index)
		{
			static const int num = 28;
			static const unsigned long prime[num] =
			{
				53, 97, 193, 389, 769,
				1543, 3079, 6151, 12289, 24593,
				49157, 98317, 196613, 393241, 786433,
				1572869, 3145739, 6291469, 12582917, 25165843,
				50331653, 100663319, 201326611, 402653189, 805306457,
				1610612741, 3221225473, 4294967291
			};

			size_t i = 0;
			for (i = 0; i < num; ++i)
			{
				if (prime[i] > index)
					return prime[i];
			}

			return prime[i];
		}
		*/

		//插入函数
		pair<iterator, bool> Insert(const T& data)
		{
			GetKey get;
			iterator it = Find(get(data));
			if (it != end())
				return make_pair(it, false);

			Hash hash;
			//负载因子/荷载系数 -- Load_Factor = _n / _tables.size();
			//负载因子 == 1时扩容
			if (_n == _tables.size())
			{
				///  高级代码1.0  /
				/*
				size_t newsize = _tables.size() == 0 ? 10 : _tables.size() * 2;
				HashTable<K, V> newht;
				newht.resize(newsize);
				for (auto& ptr : _tables)
				{
					while (ptr)
					{
						newht.Insert(ptr->_pair);
						ptr = ptr->_next;
					}
				}

				_tables.swap(newht._tables);
				*/


				//初代扩容
				size_t newsize = _tables.size() == 0 ? 10 : _tables.size() * 2;

				//引进stl库素数思想
				//size_t newsize = GetNextPrime(_tables.size());

				vector<Node*> newtables(newsize, nullptr);
				//遍历旧表 取出旧表里每一个指针
				for (auto& ptr : _tables)
				{
					//ptr是旧表里存储的每一个指针
					//它指向当前哈希桶的首结点 即他存储的是首结点的地址
					while (ptr)
					{
						//算出 当前结点根据新哈希函数计算的新下标
						size_t hashi = hash(get(ptr->_data)) % newtables.size();

						//ptr是首结点的地址 ptr->_next为第二个结点的地址
						Node* next = ptr->_next;

						// 头插到新表
						ptr->_next = newtables[hashi];
						newtables[hashi] = ptr;

						//更新ptr 即向下遍历
						ptr = next;
					}
				}

				_tables.swap(newtables);
			}

			//哈希函数计算出的下标
			size_t hashi = hash(get(data)) % _tables.size();
			//链表头插
			Node* newnode = new Node(data);
			newnode->_next = _tables[hashi];
			_tables[hashi] = newnode;
			++_n;

			return make_pair(iterator(newnode, this), false);
		}

		//最大桶数据个数
		size_t MaxBucketSize()
		{
			size_t max = 0;
			for (size_t i = 0; i < _tables.size(); ++i)
			{
				auto ptr = _tables[i];
				size_t size = 0;
				while (ptr)
				{
					++size;
					ptr = ptr->_next;
				}

				//每个桶数据个数
				//printf("[%d] -> %d\n", i, size);

				if (size > max)
					max = size;
			}
			return max;
		}
	private:
		vector<Node*> _tables; // 指针数组
		size_t _n = 0;         // 存储有效数据个数
	};
}

3.2unordered_set.h

#pragma once
#include "HashTable.h"

namespace ape
{
	template<class K, class Hash = HashFunc<K>>
	class unordered_set
	{
	public:
		//获得key
		struct SetGetKey
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		typedef typename ChainAddressing::HashTable<K, K, SetGetKey, Hash>::const_iterator iterator;
		typedef typename ChainAddressing::HashTable<K, K, SetGetKey, Hash>::const_iterator const_iterator;

		//迭代器
		iterator begin()
		{
			return _ht.begin();
		}

		iterator end()
		{
			return _ht.end();
		}

		const_iterator begin() const
		{
			return _ht.begin();
		}

		const_iterator end() const
		{
			return _ht.end();
		}

		//插入
		pair<iterator, bool> insert(const K& key)
		{
			return _ht.Insert(key);
		}
		//查找
		iterator find(const K& key)
		{
			return _ht.Find(key);
		}
		//删除
		bool erase(const K& key)
		{
			return _ht.Erase(key);
		}

	private:
		ChainAddressing::HashTable<K, K, SetGetKey, Hash> _ht;
	};

	//打印函数
	void print(const unordered_set<int>& s)
	{
		unordered_set<int>::const_iterator it = s.begin();
		while (it != s.end())
		{
			cout << *it << " ";
			++it;
		}
		cout << endl;
	}

	//测试函数
	void test_unordered_set()
	{
		int a[] = { 3, 33, 2, 13, 5, 12, 1002 };
		unordered_set<int> s;
		for (auto e : a)
			s.insert(e);

		s.insert(54);
		s.insert(107);

		unordered_set<int>::iterator it = s.begin();
		while (it != s.end())
		{
			cout << *it << " ";
			++it;
		}
		cout << endl;

		for (auto e : s)
			cout << e << " ";

		cout << endl;
		print(s);
	}
}

3.3unordered_map.h

#pragma once
#include "HashTable.h"

namespace ape
{
	template<class K, class V, class Hash = HashFunc<K>>
	class unordered_map
	{
	public:
		//获得key
		struct MapGetKey
		{
			const K& operator()(const pair<K, V>& pair)
			{
				return pair.first;
			}
		};
	public:
		typedef typename ChainAddressing::HashTable<K, pair<const K, V>, MapGetKey, Hash>::iterator iterator;
		typedef typename ChainAddressing::HashTable<K, pair<const K, V>, MapGetKey, Hash>::const_iterator const_iterator;

		//迭代器
		iterator begin()
		{
			return _ht.begin();
		}

		iterator end()
		{
			return _ht.end();
		}

		const_iterator begin() const
		{
			return _ht.begin();
		}

		const_iterator end() const
		{
			return _ht.end();
		}

		//插入
		pair<iterator, bool> insert(const pair<K, V>& pair)
		{
			return _ht.Insert(pair);
		}

		//下标运算符
		V& operator[](const K& key)
		{
			pair<iterator, bool> pair = insert(make_pair(key, V()));
			return pair.first->second;
		}

		//查找
		iterator find(const K& key)
		{
			return _ht.Find(key);
		}

		//删除
		bool erase(const K& key)
		{
			return _ht.Erase(key);
		}

	private:
		ChainAddressing::HashTable<K, pair<const K, V>, MapGetKey, Hash> _ht;
	};

	void test_unordered_map1()
	{
		unordered_map<int, int> m;
		m.insert(make_pair(1, 1));
		m.insert(make_pair(3, 3));
		m.insert(make_pair(2, 2));

		unordered_map<int, int>::iterator it = m.begin();
		while (it != m.end())
		{
			cout << it->first << ":" << it->second << endl;
			++it;
		}
		cout << endl;
	}

	void test_unordered_map2()
	{
		string s[] = { "西瓜", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉", "梨" };
		unordered_map<string, int> um;
		for (auto& e : s)
		{
			um[e]++;
		}

		for (auto& pair : um)
		{
			cout << pair.first << ":" << pair.second << endl;
		}
	}

	class Date
	{
		friend struct HashDate;
		friend ostream& operator<<(ostream& _cout, const Date& d);

	public:
		Date(int year = 1900, int month = 1, int day = 1)
			: _year(year)
			, _month(month)
			, _day(day)
		{
		
		}

		bool operator<(const Date& d) const
		{
			return (_year < d._year) 
				|| (_year == d._year && _month < d._month)
				|| (_year == d._year && _month == d._month && _day < d._day);
		}

		bool operator>(const Date& d) const
		{
			return (_year > d._year)
				|| (_year == d._year && _month > d._month) 
				|| (_year == d._year && _month == d._month && _day > d._day);
		}

		bool operator==(const Date& d) const
		{
			return _year == d._year
				&& _month == d._month
				&& _day == d._day;
		}

	private:
		int _year;
		int _month;
		int _day;
	};
	ostream& operator<<(ostream& _cout, const Date& d)
	{
		_cout << d._year << "-" << d._month << "-" << d._day;
		return _cout;
	}

	struct HashDate
	{
		size_t operator()(const Date& d)
		{
			size_t value = 0;

			value += d._year;
			value *= 131;

			value += d._month;
			value *= 131;

			value += d._day;
			value *= 131;
			 
			return value;
		}
	};

	void test_unordered_map4()
	{
		Date d1(2023, 10, 1);
		Date d2(2023, 10, 5);
		Date d3(2023, 10, 2);
		Date d4(2023, 10, 2);
		Date d5(2023, 10, 2);
		Date d6(2023, 10, 1);

		Date a[] = { d1, d2, d3, d4, d5, d6 };

		unordered_map<Date, int, HashDate> um;
		for (auto e : a)
		{
			um[e]++;
		}

		for (auto& pair : um)
		{
			cout << pair.first << ":" << pair.second << endl;
		}
	}
}

3.4Test.cpp

#define _CRT_SECURE_NO_WARNINGS 
#include <iostream>
#include <list>
#include <vector>
#include <algorithm>
#include <array>
#include <time.h>
#include <queue>
#include <stack>
#include <string>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include <functional>
#include <assert.h>
using namespace std;


#include "HashTable.h"
#include "Unordered_Map.h"
#include "Unordered_Set.h"


int main()
{
	//ape::test_unordered_set();
	ape::test_unordered_map4();
	
	return 0;
}

到了这里,关于由[哈希/散列]模拟实现[unordered_map/unordered_set] (手撕迭代器)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 从哈希桶角度看 unordered_map 与 unordered_set 的实现

    哈希函数与哈希桶是计算机科学中用于实现高效数据检索的重要工具。在之前的博客中,我们已经详细探讨了哈希的基本概念、哈希函数的构造方法以及哈希桶的工作原理等内容。在本篇博客中,我们将进一步深入探索C++中的unordered系列数据结构,并利用之前介绍的哈希桶原

    2024年03月22日
    浏览(39)
  • 【C++】unordered_map,unordered_set模拟实现

    喜欢的点赞,收藏,关注一下把! 上一篇文章我们把unordered_map和unordered_set底层哈希桶的知识也都说清楚了,今天就根据哈希桶模拟实现出unordered_map和unordered_set。 这里如果看过以前文章【C++】map和set的模拟实现,应该会觉得简单。 因为unordered_map和unordered_set底层都是哈希桶

    2024年01月21日
    浏览(47)
  • C++进阶--使用哈希表实现unordered_map和unordered_set的原理与实例

    本文将介绍如何使用哈希表来实现C++ STL库中的unordered_map和unordered_set容器。我们将会解释哈希表的基本原理,并给出具体的代码示例,帮助读者更好地理解和应用哈希表。 哈希原理讲解–链接入口 set和map的实现的文章,与unordered_map实现类似 unordered_set是一种集合存储的容器

    2024年04月09日
    浏览(46)
  • Learning C++ No.25【开散列封装unordered_set和unordered_map】

    北京时间:2023/5/29/7:05,上星期更文一篇,且该篇博客在周三就写完了,所以充分体现,咱这个星期摆烂充分,哈哈哈!现在的内心情感没有以前那么从容了,这次摆的时间是有点久了,但本质影响不大,因为我现在还在码字,三天不学习,或者说是没有踏实学习,目前给我

    2024年02月07日
    浏览(44)
  • 【C++学习】哈希表的底层实现及其在unordered_set与unordered_map中的封装

    🎉个人名片: 🐼作者简介:一名乐于分享在学习道路上收获的大二在校生 🙈个人主页🎉:GOTXX 🐼个人WeChat:ILXOXVJE 🐼本文由GOTXX原创,首发CSDN🎉🎉🎉 🐵系列专栏:零基础学习C语言----- 数据结构的学习之路----C++的学习之路 🐓每日一句:如果没有特别幸运,那就请特

    2024年04月16日
    浏览(47)
  • 改造哈希表,封装unordered_map和unordered_set

    正文开始前给大家推荐个网站,前些天发现了一个巨牛的 人工智能 学习网站, 通俗易懂,风趣幽默 ,忍不住分享一下给大家。点击跳转到网站。 unordered_map是存的是pair是K,V型的,而unordered_set是K型的,里面只存一个值,那我们如何利用一个数据结构将他们都封装出来呢?

    2024年02月03日
    浏览(48)
  • C++ 哈希+unordered_map+unordered_set+位图+布隆过滤器(深度剖析)

    想象一下,你有一个巨大的图书馆,里面摆满了成千上万本书。如果你想要找到其中一本特定的书,你会怎么做?如果你按照书的编号来有序地排列它们,找到特定的书本可能会很容易。但是,如果书籍是随机地摆放,你可能需要逐本地查找,这个过程会非常耗时。 而哈希函

    2024年02月21日
    浏览(55)
  • C++STL详解(十) -- 使用哈希表封装unordered_set和unordered_map

    因为不同容器的类型不同,如果是unordered_map,V代表一个键值对,如果unordered_set,V代表Key值,而底层哈希表并不知道上层容器所要传递的V模板参数类型,为了与哈希表的模板参数区分,我们将哈希表中的V模板参数改为T. 例如: 在哈希表中当我们使用Find函数进行查找时: 如果上层传递的

    2024年02月01日
    浏览(56)
  • 【C++】如何用一个哈希表同时封装出unordered_set与unordered_map

    👀 樊梓慕: 个人主页  🎥 个人专栏: 《C语言》 《数据结构》 《蓝桥杯试题》 《LeetCode刷题笔记》 《实训项目》 《C++》 《Linux》 《算法》 🌝 每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.哈希桶源码  2.哈希表模板参数的控制 3.字符串作为键值如何映射哈希值

    2024年03月26日
    浏览(51)
  • 【C++】STL——用一个哈希表封装出unordered_map和unordered_set

    根据先前对unordered_map和unordered_set的学习,我们得知其底层是借助哈希表来实现的,接下来我们会使用上篇博客实现的开散列哈希表来模拟实现unordered_map和unordered_set,哈希表源代码链接: Hash/Hash/HashBucket.h · wei/cplusplus - 码云 - 开源中国 (gitee.com) 下面我们对哈希表进行改造,

    2023年04月18日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包