问 ChatGPT 关于 GPT 的事情:数据准备篇

这篇具有很好参考价值的文章主要介绍了问 ChatGPT 关于 GPT 的事情:数据准备篇。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、假如你是一名人工智能工程师,手里有一个65B的GPT大模型,但你需要一个6B左右的小模型,你会怎么做?

答:作为人工智能工程师,如果我手里有一个65B的GPT大模型,而我需要一个6B左右的小模型,我会采取以下步骤:

数据子集选择:对于训练大模型的数据集,我会从中选择一个子集,以便在构建小模型时使用。这个子集应该保留足够的多样性和代表性,以确保小模型在各种任务上的表现仍然良好。

参数剪枝:我会使用剪枝技术来减少大模型的参数数量。剪枝可以通过删除不重要的连接和神经元来减小模型的规模。这可以通过诸如敏感度分析、结构化剪枝、稀疏训练等技术来实现。

微调:在剪枝后,我会对小模型进行微调,以便在尽可能保留性能的同时进一步优化其参数。微调可以使用较小的学习率和较少的迭代次数来防止过拟合。

模型压缩:如果小模型的大小仍然超过所需的6B左右,我可以考虑使用模型压缩技术。这包括权重量化、参数共享、低秩分解等方法,以减小模型的内存占用。

通过以上步骤,我可以将原始的65B的GPT大模型转换为一个6B左右的小模型。

它只提到了剪枝,但是不可能剪掉90%吧,我试试再引导它回答最优方案。

二、你选择的数据子集应当包含什么样的数据?

对于选择数据子集,可以根据具体的任务和需求来确定所包含的数据类型和内容。一般来说,数据子集应当包含以下几种数据:

目标数据:针对所解决的问题或任务,选择与之相关的目标数据。比如,如果是进行情感分析,数据子集应包含带有情感标签的文本数据。

多样性数据:确保数据子集具有多样性,包含不同领域、不同类型、不同长度的数据样本。这样可以提高模型的泛化能力和适应性。

平衡数据:在数据子集中,应尽量保持各类别或标签的平衡,避免某一类别的样本过多或过少,以免引发模型偏见或不准确性。

高质量数据:选择高质量的数据样本,确保数据的准确性、完整性和可靠性。可以通过专业的数据源、标准化的标注流程等来保证数据质量。

这里,我当然知道长文本+短文本+新闻+论文/百科就能覆盖全部,但是它没有直接回答出来,还需要引导。

三、假设你只能抓取四个网站上的全部数据,你会如何选择网站来准备GPT的预训练数据?

对于准备GPT的预训练数据,我会选择以下四个网站来抓取全部数据:

Wikipedia:作为一个丰富的知识库,Wikipedia包含了大量的文章和信息,可以提供广泛的领域知识和语言表达。

Reddit:作为一个社交论坛,Reddit上有各种不同主题的讨论帖和评论,可以提供丰富的实时、多样化的对话内容。

Stack Exchange:作为一个问答社区,Stack Exchange上有丰富的专业领域问题和答案,可以提供专业知识和相关讨论。

News websites:选择一家新闻网站,如BBC、CNN或New York Times,可以获得各种新闻报道和评论,涵盖了全球范围内的各种话题和事件。

这样的选择可以提供广泛的主题、语言风格和领域知识,为GPT的预训练提供多样性和通用性。

这里跟我的预想完全一样:新闻站点提供长文本,Rediit提供对话,SE提供开放问答,也就是指令微调数据,WIKI提供知识。

四、再看看中文的:

针对准备GPT的预训练数据,我会选择以下四个中文网站:

百度百科(https://baike.baidu.com):作为最大的中文百科网站,百度百科涵盖了广泛的主题和领域。其中的文章丰富多样,可以提供丰富的知识和语言样本。

新浪新闻(https://news.sina.com.***娱乐等各个领域,能够提供丰富的实时信息和语言样本。

知乎(https://www.zhihu.com):知乎是一个知识问答社区,用户在该平台上提问、回答和分享各种话题。这里聚集了大量有深度和专业知识的用户,他们的回答和讨论能够提供多样化的语言样本。

豆瓣读书(https://book.douban.com):豆瓣读书是一个图书推荐和社交平台,用户可以在这里发布书评、评分、评论和讨论。这些评论和讨论覆盖了各种类型的书籍,从小说到学术著作,提供了多样化的语言样本。

这四个网站涵盖了不同领域的知识和信息,能够提供丰富的中文文本数据,有助于训练出更全面和多样化的GPT模型。

百科提供知识,新闻提供长文本,知乎提供开放问答,豆瓣读书不知道干嘛的,如果是小组可以提供对话。

五:我可不可以拿笔趣阁等小说文本代替新浪新闻,为GPT提供长文本的训练数据?

你可以使用笔趣阁等小说文本作为GPT的训练数据,但需要注意以下几点:

版权问题:确保你有合法的授权或许可,以使用这些小说文本作为训练数据。尊重作者的权益是非常重要的。

文本质量:小说文本和新闻文本在内容和风格上存在很大差异。小说通常更加虚构和富有想象力,而新闻更加注重事实和客观性。因此,使用小说文本作为训练数据可能会影响到GPT在生成新闻文本时的准确性和可靠性。

数据多样性:为了使GPT具有更好的泛化能力,建议使用多样性的训练数据。单一来源的数据可能会导致模型在特定领域或风格上过拟合。

和我预想的一样,是可行的。

六、你推荐的网站里面不包含中文多轮对话数据集,请列举几个包含中文多轮对话的网站。

对于中文多轮对话数据集,以下是一些包含的网站:

THU Chat Corpus:清华大学提供的多轮中文对话数据集,包含了来自微博、论坛等多个领域的对话数据。

DuConv:百度开放的多轮中文对话数据集,主要包括了知识问答和聊天对话两种类型。

ECDT:哈尔滨工业大学提供的多轮中文对话数据集,覆盖了不同领域的实际对话情景。

七、请判断以下网站中是否包含中文多轮对话:百度贴吧、新浪微博、豆瓣小组

以下是对三个网站的判断:

百度贴吧:百度贴吧是一个中文社区网站,用户可以在各个贴吧中进行中文多轮对话,因此包含中文多轮对话。

新浪微博:新浪微博是一个中文社交媒体平台,用户可以发表微博并与其他用户进行评论和互动,因此也包含中文多轮对话。

豆瓣小组:豆瓣小组是一个中文社区网站,用户可以在小组中进行讨论和互动,因此也包含中文多轮对话。

这一点和人类表现一样,你不限定范围直接问它,它就想不到,但是如果你给定一个范围让它判断,它就能判断出来。

八、GPT模型的模型训练分为哪几个阶段?这些阶段分别使用什么样的数据集?

GPT模型的模型训练分为两个阶段:预训练和微调。

在预训练阶段,GPT模型使用了一个大规模的无监督文本数据集。通常情况下,这个数据集是从互联网上的各种来源收集而来的,比如维基百科、新闻文章、论坛帖子等。预训练的目标是让模型学会预测下一个词语出现的概率,通过这个任务来学习语言的统计规律和语义信息。

在微调阶段,GPT模型使用了一个特定的监督任务的数据集。这个数据集通常是由人工标注的,包含了输入和对应的目标输出。比如,在生成对话的任务中,数据集可以由对话文本和对应回答组成。微调的目标是让模型在特定任务上表现得更好,通过有监督学习的方式进一步调整模型参数。

可以,不过微调比预训练复杂得多。需要展开叙述以下。

九、给你一个语言生成模型,他能根据一段文本生成下一段文本,如何把它变成一个对话模型?

要将一个语言生成模型转变为对话模型,可以引入一个上下文环境。传统的语言生成模型会根据前面的文本生成下一段文本,而对话模型则可以根据前面的对话历史生成下一段对话。为此,我们可以将对话历史作为模型输入的一部分,并训练模型生成下一段对话。

具体来说,可以将对话历史拼接成一个长文本,并加上一些特殊标记来分隔对话历史和当前回答的文本。这样,模型可以根据整个文本序列来生成回答。

在训练时,我们需要提供包含对话历史和模型期望生成的回答的样本对。模型会学习如何根据对话历史生成合适的回答。

十、你现在有了一个模型,可以进行语言生成和多轮对话,如何让它执行多种自然语言任务,例如做规划,总结文本和做翻译?

对于这些自然语言任务,可以通过针对特定任务的指导性示例来训练模型。例如,对于规划任务,可以提供一些关于规划的示例问题和相应的答案,让模型学会生成合适的规划建议。对于总结文本任务,可以提供一些文本段落和相应的摘要,让模型学会总结文本的能力。对于翻译任务,可以提供一些双语对照的句子,让模型学会将一种语言翻译成另一种语言。

在训练过程中,可以使用一种称为"无监督预训练"的方法,先让模型自己学习语言的一般模式和结构,然后再使用有监督的任务来进一步微调模型。这样做可以提高模型在各种自然语言任务上的表现。

正确答案是加上提示词把这些都变成对话任务。

十一、提示词的作用是什么

提示词在对话中起到引导和提示的作用。它们可以帮助对话参与者更好地理解问题的意思,提供更准确的回答。提示词可以是具体的关键词或短语,也可以是一段描述性的句子,都有助于限定对话的主题和范围。

例如,在搜索引擎中输入关键词时,提示词会自动补全搜索内容,提供与关键词相关的建议。在对话中,提示词可以指导对话者提供更具体或相关的信息,以满足对方的需求。

还是这个现象,我必须告诉他正确答案。

总结

ChatGPT 有一个很令人无语的现象,就是你问一个事情,它不能给出答案,但是你给它答案,它反而能推出问题。

就比如你问【提示词作用是什么】,显然正常人的a思路就是告诉模型你所需要的任务类型,或者从工程师的角度,把任何自然语言任务都转化成对话任务,统一建模和处理。但是你直接问它【你有了一个多轮对话模型,如何让它做各种自然语言任务】,它就根本不会想到提示词这个东西。文章来源地址https://www.toymoban.com/news/detail-728642.html

到了这里,关于问 ChatGPT 关于 GPT 的事情:数据准备篇的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 生成式人工智能(AIGC)综述:ChatGPT从GPT-4到GPT-5可以一统AIGC?

    原文题目: 《A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to GPT-5 All You Need?》 文章链接: https://arxiv.org/abs/2303.11717 https://arxiv.org/abs/2303.11717 引言: 随着ChatGPT的火热传播,生成式AI(AIGC,即AI生成的内容)因其分析和创造文本、图像等能力而在各地引起了轰动。在如此强

    2024年02月09日
    浏览(57)
  • 关于ChatGPT人工智能浅谈

            现今ChatGPT已经向我们展示了其强大的数据收集分析和处理能力,这点随着其不断的学习训练会越来越强。ChatGPT这类生成式人工智能在数据收集分析和处理能力这方面远远超过人类,虽然它目前还不能完全做到按人类的方式对数据进行利用(这类生成式人工智能目前

    2024年02月05日
    浏览(50)
  • 标题:深入了解ChatGPT:基于GPT-4架构的创新人工智能语言模型及其应用前景

    一、ChatGPT简介 ChatGPT是一种基于OpenAI开发的GPT-4架构的人工智能语言模型。GPT-4是一种自然语言处理技术,其前身为GPT-3。随着技术的迅速发展,GPT-4在许多方面超越了GPT-3,如模型规模、知识库和性能。ChatGPT在多种语言和应用场景中表现出卓越的性能,成为现代人工智能领域

    2024年02月03日
    浏览(52)
  • 日益强大的人工智能OpenAI ChatGPT GPT-4真的会让程序员失业吗?

    今年肯定开始看起来像人工智能起义之年,它进入所有类型的IDE软件只是时间问题。随着微软对OpenAI的至少10亿美元的巨额投资,球真正开始滚动,OpenAI是令人钦佩的强大ChatGPT,Dall-E以及人工智能和机器学习(ML)类似进展背后的公司。这是微软的一个勇敢举动,它似乎让谷

    2023年04月09日
    浏览(62)
  • 2023年人工智能GPT-4时代,最新13个ChatGPT商业市场AIGC应用正在掀起革命性变革!

    ChatGPT是未来商务世界的颠覆者,它的多模态自然语言模型及相关技术将会彻底改变传统商业模式。不同于其他数字化产品,ChatGPT使用最先进的自然语言处理和深度学习技术,能够自动识别并解决大量客户问题。而更为重要的是,ChatGPT商业应用可以为企业节省成本,提高效率

    2024年02月11日
    浏览(90)
  • 【译】GPT-4 没有弄清楚事情,但它已经知道了

    原作:史蒂夫·纽曼 引子:它是一只随机鹦鹉,但大多数时候你也是如此,而且它记住的东西比你多得多        关于ChatGPT已经有无数的笔墨了。然而,大部分关注点要么是非常短期和战术性的(“从 ChatGPT 获得出色营销文案的八个魔法提示”),要么是非常长期和理论性的

    2024年01月21日
    浏览(73)
  • 【ChatGPT】万字长文揭秘 GPT 背后:为何“大模型” 就一下子成为了引领人工智能 AI2.0时代热门技术?

    GPT (Generative Pre-trained Transformer) ,生成式预训练Transformer: 是一种基于 深度学习 的 自然语言处理模型 ,GPT 由 OpenAI 开发。 GPT 是一种基于 Transformer 模型的语言模型,可以通过大量的文本数据进行训练,从而学习到语言的规律和模式,进而生成自然流畅的语言文本。 本文将详

    2023年04月19日
    浏览(58)
  • 2023年新课标I卷作文,5位人工智能考生(ChatGPT,文心一言,GPT4, ChatGLM-6b, ChatT5)来写作,看谁写得最好

    大家好,我是微学AI,今天是2023年6月7日,一年一度的高考又来了,今年的高考作文题也新鲜出炉。今年是特殊的一年,有人说2023是AI的元年,这一年里有大语言模型的爆发,每天都有大模型的公布,在2023年有文心一言,GPT4, ChatGLM等语言模型的发布,我们已经步入人工智能领

    2024年02月08日
    浏览(61)
  • 全网最详细中英文ChatGPT接口文档(五)30分钟快速入门ChatGPT——手把手示例教程:如何建立一个人工智能回答关于您的网站问题,小白也可学

    This tutorial walks through a simple example of crawling a website (in this example, the OpenAI website), turning the crawled pages into embeddings using the Embeddings API, and then creating a basic search functionality that allows a user to ask questions about the embedded information. This is intended to be a starting point for more sophisticated applicat

    2023年04月17日
    浏览(57)
  • AIGC系列:1.chatgpt可以用来做哪些事情?

    上图的意思:神器轩辕剑 那么,在现在AI盛行的信息时代, 你是否知道如何获得和利用ChatGPT这一把轩辕剑来提升你的攻击力和生存能力呢? 程序员小张: 刚毕业,参加工作1年左右,日常工作是CRUD 架构师老李: 多个大型项目经验,精通各种开发架构屠龙宝术; 在未来的世

    2024年02月09日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包