【多级缓存】

这篇具有很好参考价值的文章主要介绍了【多级缓存】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图:【多级缓存】,springcloud,缓存
存在下面的问题:

  • 请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈

  • Redis缓存失效时,会对数据库产生冲击

多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能
在多级缓存架构中,Nginx内部需要编写本地缓存查询Redis查询Tomcat查询的业务逻辑,因此这样的nginx服务不再是一个反向代理服务器,而是一个编写业务的Web服务器了

【多级缓存】,springcloud,缓存

可见,多级缓存的关键有两个:

  • 一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询
  • 另一个就是在Tomcat中实现JVM进程缓存
  • Nginx编程则会用到OpenResty框架结合Lua这样的语言。

1. JVM进程缓存

案例:
需求:利用Caffeine实现下列需求:

  • 给根据id查询商品的业务添加缓存,缓存未命中时查询数据库
  • 给根据id查询商品库存的业务添加缓存,缓存未命中时查询数据库
  • 缓存初始大小为100
  • 缓存上限为10000

首先,我们需要定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。
在item-service的com.heima.item.config包下定义CaffeineConfig类:
【多级缓存】,springcloud,缓存
然后,修改item-service中的com.heima.item.web包下的ItemController类,添加缓存逻辑:
【多级缓存】,springcloud,缓存

2. Lua语法

Nginx编程需要用到Lua语言,因此学习Lua的基本语法。
Lua中支持的常见数据类型包括:
【多级缓存】,springcloud,缓存
需求:自定义一个函数,可以打印table,当参数为nil时,打印错误信息
【多级缓存】,springcloud,缓存

3. 实现多级缓存

多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。
【多级缓存】,springcloud,缓存

  • windows上的nginx用来做反向代理服务,将前端的查询商品的ajax请求代理到OpenResty集群
  • OpenResty集群用来编写多级缓存业务

3.1 反向代理流程

现在,商品详情页使用的是假的商品数据。不过在浏览器中,可以看到页面有发起ajax请求查询真实商品数据。【多级缓存】,springcloud,缓存
请求地址是localhost,端口是80,就被windows上安装的Nginx服务给接收到了。然后代理给了OpenResty集群:
【多级缓存】,springcloud,缓存

3.2 OpenResty快速入门

【多级缓存】,springcloud,缓存
可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID

OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:
1)添加对OpenResty的Lua模块的加载【多级缓存】,springcloud,缓存
2)获取商品id【多级缓存】,springcloud,缓存

3)编写item.lua【多级缓存】,springcloud,缓存

【多级缓存】,springcloud,缓存

【多级缓存】,springcloud,缓存

4. 查询Tomcat

4.1 发送http请求的API

nginx提供了内部API用以发送http请求:【多级缓存】,springcloud,缓存
返回的响应内容包括:

  • resp.status:响应状态码
  • resp.header:响应头,是一个table
  • resp.body:响应体,就是响应数据

注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理。但是我们希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:【多级缓存】,springcloud,缓存

4.2 封装http工具

1)添加反向代理,到windows的Java服务

因为item-service中的接口都是/item开头,所以我们监听/item路径,代理到windows上的tomcat服务。【多级缓存】,springcloud,缓存
以后,只要我们调用ngx.location.capture("/item"),就一定能发送请求到windows的tomcat服务。

2)封装工具类
【多级缓存】,springcloud,缓存
所以,自定义的http工具也需要放到这个目录下。
/usr/local/openresty/lualib目录下,新建一个common.lua文件:内容如下:
【多级缓存】,springcloud,缓存
这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。

使用的时候,可以利用require('common')来导入该函数库,这里的common是函数库的文件名。
3)实现商品查询
最后,我们修改/usr/local/openresty/lua/item.lua文件,利用刚刚封装的函数库实现对tomcat的查询:【多级缓存】,springcloud,缓存
这里查询到的结果是json字符串,并且包含商品、库存两个json字符串,页面最终需要的是把两个json拼接为一个json:
【多级缓存】,springcloud,缓存
这就需要我们先把JSON变为lua的table,完成数据整合后,再转为JSON。
OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。
下面,我们修改之前的item.lua中的业务,添加json处理功能:【多级缓存】,springcloud,缓存

4.3 基于ID负载均衡

刚才的代码中,我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式:
因此,OpenResty需要对tomcat集群做负载均衡。

而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:

  • 第一次会访问8081端口的tomcat服务,在该服务内部就形成了JVM进程缓存
  • 第二次会访问8082端口的tomcat服务,该服务内部没有JVM缓存(因为JVM缓存无法共享),会查询数据库

如果能让同一个商品,每次查询时都访问同一个tomcat服务,那么JVM缓存就一定能生效了。

也就是说,我们需要根据商品id做负载均衡,而不是轮询。

nginx根据请求路径做hash运算,把得到的数值对tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。

实现
修改/usr/local/openresty/nginx/conf/nginx.conf文件,实现基于ID做负载均衡。
首先,定义tomcat集群,并设置基于路径做负载均衡:【多级缓存】,springcloud,缓存

4.4 流程小结

【多级缓存】,springcloud,缓存
首先进来的localhost:80会由Nginx拦截代理到openresty,openresty会将路径为/api/item/(***)这样的路径解析出访问的商品id,之后通过将/item这样的路径代理发送到windows电脑中的Tomcat服务器查询,当tomcat中线程缓存有则返回,没有则去数据库查询。

5. Redis缓存查询

冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。

缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。
我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。
【多级缓存】,springcloud,缓存
4)编写初始化类

缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。

这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行。【多级缓存】,springcloud,缓存
现在,Redis缓存已经准备就绪,我们可以再OpenResty中实现查询Redis的逻辑了。如下图红框所示:【多级缓存】,springcloud,缓存
当请求进入OpenResty之后:

  • 优先查询Redis缓存
  • 如果Redis缓存未命中,再查询Tomcat

封装Redis工具
OpenResty提供了操作Redis的模块,我们只要引入该模块就能直接使用。但是为了方便,我们将Redis操作封装到之前的common.lua工具库中。
修改/usr/local/openresty/lualib/common.lua文件:
【多级缓存】,springcloud,缓存
【多级缓存】,springcloud,缓存
【多级缓存】,springcloud,缓存
【多级缓存】,springcloud,缓存
完整的common.lua:

-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)

-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
    local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
    local pool_size = 100 --连接池大小
    local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
    if not ok then
        ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
    end
end

-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
    -- 获取一个连接
    local ok, err = red:connect(ip, port)
    if not ok then
        ngx.log(ngx.ERR, "连接redis失败 : ", err)
        return nil
    end
    -- 查询redis
    local resp, err = red:get(key)
    -- 查询失败处理
    if not resp then
        ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
    end
    --得到的数据为空处理
    if resp == ngx.null then
        resp = nil
        ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
    end
    close_redis(red)
    return resp
end

-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
    local resp = ngx.location.capture(path,{
        method = ngx.HTTP_GET,
        args = params,
    })
    if not resp then
        -- 记录错误信息,返回404
        ngx.log(ngx.ERR, "http查询失败, path: ", path , ", args: ", args)
        ngx.exit(404)
    end
    return resp.body
end
-- 将方法导出
local _M = {  
    read_http = read_http,
    read_redis = read_redis
}  
return _M

5.1 实现Redis查询

接下来,我们就可以去修改item.lua文件,实现对Redis的查询了。
查询逻辑是:

  • 根据id查询Redis
  • 如果查询失败则继续查询Tomcat
  • 将查询结果返回

1)修改/usr/local/openresty/lua/item.lua文件,添加一个查询函数:
【多级缓存】,springcloud,缓存
2)而后修改商品查询、库存查询的业务:【多级缓存】,springcloud,缓存

6. Nginx本地缓存

现在,整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:
【多级缓存】,springcloud,缓存

6.1 本地缓存API

OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker之间共享数据,实现缓存功能。
1)开启共享字典,在nginx.conf的http下添加配置:【多级缓存】,springcloud,缓存
2)操作共享字典:【多级缓存】,springcloud,缓存

6.2 实现本地缓存查询

1)修改/usr/local/openresty/lua/item.lua文件,修改read_data查询函数,添加本地缓存逻辑:【多级缓存】,springcloud,缓存
2)修改item.lua中查询商品和库存的业务,实现最新的read_data函数:【多级缓存】,springcloud,缓存
其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。
3)完整的item.lua文件:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache

-- 封装查询函数
function read_data(key, expire, path, params)
    -- 查询本地缓存
    local val = item_cache:get(key)
    if not val then
        ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
        -- 查询redis
        val = read_redis("127.0.0.1", 6379, key)
        -- 判断查询结果
        if not val then
            ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
            -- redis查询失败,去查询http
            val = read_http(path, params)
        end
    end
    -- 查询成功,把数据写入本地缓存
    item_cache:set(key, val, expire)
    -- 返回数据
    return val
end

-- 获取路径参数
local id = ngx.var[1]

-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800,  "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

7. 缓存同步

大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。

所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。

7.1 数据同步策略

缓存数据同步的常见方式有三种:

设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新

  • 优势:简单、方便
  • 缺点:时效性差,缓存过期之前可能不一致
  • 场景:更新频率较低,时效性要求低的业务

同步双写:在修改数据库的同时,直接修改缓存

  • 优势:时效性强,缓存与数据库强一致
  • 缺点:有代码侵入,耦合度高;
  • 场景:对一致性、时效性要求较高的缓存数据

异步通知:修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据

  • 优势:低耦合,可以同时通知多个缓存服务
  • 缺点:时效性一般,可能存在中间不一致状态
  • 场景:时效性要求一般,有多个服务需要同步

而异步实现又可以基于MQ或者Canal来实现:
1)基于MQ的异步通知:【多级缓存】,springcloud,缓存
解读:

  • 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
  • 缓存服务监听MQ消息,然后完成对缓存的更新,依然有少量的代码侵入。

2)基于Canal的通知【多级缓存】,springcloud,缓存

解读:

  • 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
  • Canal监听MySQL变化,当发现变化后,立即通知缓存服务
  • 缓存服务接收到canal通知,更新缓存,代码零侵入

7.2 安装Canal

Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:【多级缓存】,springcloud,缓存

  • 1)MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
  • 2)MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
  • 3)MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成与数据库的同步。
【多级缓存】,springcloud,缓存

步骤

  1. 引入依赖【多级缓存】,springcloud,缓存
  2. 编写配置:【多级缓存】,springcloud,缓存
  3. 修改Item实体类:通过@Id、@Column、@Transient注解完成Item与数据库表字段的映射:【多级缓存】,springcloud,缓存
  4. 编写监听器:
    通过实现EntryHandler<T>接口编写监听器,监听Canal消息。注意两点:
  • 实现类通过@CanalTable("tb_item")指定监听的表信息
  • EntryHandler的泛型是与表对应的实体类
package com.heima.item.canal;

import com.github.benmanes.caffeine.cache.Cache;
import com.heima.item.config.RedisHandler;
import com.heima.item.pojo.Item;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import top.javatool.canal.client.annotation.CanalTable;
import top.javatool.canal.client.handler.EntryHandler;

@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {

    @Autowired
    private RedisHandler redisHandler;
    @Autowired
    private Cache<Long, Item> itemCache;

    @Override
    public void insert(Item item) {
        // 写数据到JVM进程缓存
        itemCache.put(item.getId(), item);
        // 写数据到redis
        redisHandler.saveItem(item);
    }

    @Override
    public void update(Item before, Item after) {
        // 写数据到JVM进程缓存
        itemCache.put(after.getId(), after);
        // 写数据到redis
        redisHandler.saveItem(after);
    }

    @Override
    public void delete(Item item) {
        // 删除数据到JVM进程缓存
        itemCache.invalidate(item.getId());
        // 删除数据到redis
        redisHandler.deleteItemById(item.getId());
    }
}

在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:

package com.heima.item.config;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
public class RedisHandler implements InitializingBean {

    @Autowired
    private StringRedisTemplate redisTemplate;

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;

    private static final ObjectMapper MAPPER = new ObjectMapper();

    @Override
    public void afterPropertiesSet() throws Exception {
        // 初始化缓存
        // 1.查询商品信息
        List<Item> itemList = itemService.list();
        // 2.放入缓存
        for (Item item : itemList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(item);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        }

        // 3.查询商品库存信息
        List<ItemStock> stockList = stockService.list();
        // 4.放入缓存
        for (ItemStock stock : stockList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(stock);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
        }
    }

    public void saveItem(Item item) {
        try {
            String json = MAPPER.writeValueAsString(item);
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        } catch (JsonProcessingException e) {
            throw new RuntimeException(e);
        }
    }

    public void deleteItemById(Long id) {
        redisTemplate.delete("item:id:" + id);
    }
}

8. 总结

【多级缓存】,springcloud,缓存
首先用户发一个请求,先经过Nginx(此处Nginx作为静态资源服务器与反向代理服务器)返回一个静态资源,经过浏览器渲染给呈现出来,但是上面的数据都是假的,此时前端会发一些ajax请求后端数据,先吧请求发送给Nginx,因为Nginx中有本地缓存,所以还是将请求路由(这里类似于redis的槽),确保同一个请求路由到同一个Nginx服务器,当Nginx接收到请求时,首先会查看本地缓存有没有,没有的话先在redis缓存中找,当redis中也没有的话才访问Tomcat,此时Tomcat会先在JVM进程缓存中去找,再没有的话才去数据库查,然后针对缓存同步来说的话,用canal监听mysql的binlog日志,其实canal就是伪装成一个slave节点,当监听到binlog变换时,通知给java客户端,然后在程序中进行缓存同步的操作。其实canal在代码中的话就是实现EntryHandler<>这个接口重写里面的insert、update、delete方法,将redis和jvm进程缓存进行更新操作。文章来源地址https://www.toymoban.com/news/detail-728656.html

到了这里,关于【多级缓存】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Redis】多级缓存(nginx缓存、redis缓存及tomcat缓存)

    传统的缓存策略一般是请求到达 tomcat 后,先查询redis,如果未命中则查询数据库。这种方式存在以下两个问题: 请求要经过 tomcat 处理, tomcat 的性能成为整个系统的瓶颈。 redis缓存失效时,会对数据库产生冲击。 多级缓存 就是充分利用请求处理的每个环节,分别添加缓存

    2023年04月21日
    浏览(39)
  • 如何实现多级缓存?

    冗余设计是在系统或设备完成任务起关键作用的地方,增加一套以上完成相同功能的功能通道(or 系统)、工作元件或部件,以保证当该部分出现故障时,系统或设备仍能正常工作,以减少系统或者设备的故障概率,提高系统可靠性。 开始前呢,给大家推荐一个程序员好物,

    2024年02月22日
    浏览(39)
  • 多级缓存 架构设计

    在40岁老架构师 尼恩的 读者社区 (50+)中,很多小伙伴拿到一线互联网企业如阿里、网易、有赞、希音、百度、网易、滴滴的面试资格,多次遇到一个很重要的面试题: 20w的QPS的场景下,服务端架构应如何设计? 10w的QPS的场景下,缓存架构应如何设计? 尼恩提示, 缓存架构

    2024年02月10日
    浏览(37)
  • 微服务(多级缓存)

    目录 多级缓存 1.什么是多级缓存 2.JVM进程缓存 2.2.初识Caffeine 2.3.实现JVM进程缓存 2.3.1.需求 2.3.2.实现 3.Lua语法入门 3.1.初识Lua 3.1.HelloWorld  3.2.变量和循环 3.2.1.Lua的数据类型 3.2.2.声明变量 3.2.3.循环 3.3.条件控制、函数 3.3.1.函数 3.3.2.条件控制 3.3.3.案例 4.实现多级缓存 4.1.安装

    2024年02月11日
    浏览(33)
  • 微服务08-多级缓存

    传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图: 存在下面的问题: •请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈 •Redis缓存失效时,会对数据库产生冲击 多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻T

    2024年02月13日
    浏览(45)
  • Redis高级篇 - 多级缓存

    传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图: 存在下面的问题: 请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈 Redis缓存失效时,会对数据库产生冲击 多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压

    2024年02月08日
    浏览(39)
  • Redis多级缓存

    传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,会存在以下问题: 请求需要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈。 Redis缓存失效时,会对数据库产生冲击。 而多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomca

    2024年02月15日
    浏览(55)
  • 多级缓存

    传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图: 存在下面的问题: •请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈 •Redis缓存失效时,会对数据库产生冲击 多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻T

    2024年01月22日
    浏览(26)
  • 【多级缓存】

    传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图: 存在下面的问题: 请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈 Redis缓存失效时,会对数据库产生冲击 多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压

    2024年02月07日
    浏览(17)
  • 【Redis】多级缓存之缓存数据同步策略与Canal

    目录 一、数据同步策略 1.设置有效期 2.同步双写 3.异步通知 二、Canal 三、监听Canal 缓存数据同步的常见方式有三种: 给缓存设置有效期,到期后自动删除。再次查询时更新,他简单、方便,但是时效性差,缓存过期之前可能不一致,适用于更新频率较低,时效性要求低的业

    2024年02月11日
    浏览(77)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包