专题一:递归【递归、搜索、回溯】

这篇具有很好参考价值的文章主要介绍了专题一:递归【递归、搜索、回溯】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

什么是递归

函数自己调用自己的情况。

为什么要用递归

主问题->子问题        子问题->子问题

宏观看待递归

不要在意细节展开图,把函数当成一个黑盒,相信这个黑盒一定能完成任务。

 如何写好递归

专题一:递归【递归、搜索、回溯】,递归搜索回溯,算法

一、汉诺塔

 

class Solution {
public:
    void dfs(vector<int>& A,vector<int>& B,vector<int>& C,int n)
    {
        if(n == 1) 
        {
            C.push_back(A.back());
            A.pop_back();
            return;
        };
        dfs(A,C,B,n-1);
        C.push_back(A.back());
        A.pop_back();
        dfs(B,A,C,n-1);
    }
    void hanota(vector<int>& A, vector<int>& B, vector<int>& C) {

        dfs(A,B,C,A.size());
    }
};

 二、合并两个有序链表

专题一:递归【递归、搜索、回溯】,递归搜索回溯,算法

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) {
        if(l1 == nullptr)return l2;
        if(l2 == nullptr) return l1;

        if(l1->val <= l2->val) 
        {
            l1->next = mergeTwoLists(l1->next,l2);
            return l1;
        }
        else
        {
            l2->next = mergeTwoLists(l1,l2->next);
            return l2;
        }
    }
};

 专题一:递归【递归、搜索、回溯】,递归搜索回溯,算法

三、反转链表 

专题一:递归【递归、搜索、回溯】,递归搜索回溯,算法

class Solution {
public:
    ListNode* reverseList(ListNode* head) {
        if(head == nullptr || head->next == nullptr) return head;
        ListNode* newhead = reverseList(head->next);
        head->next->next = head;
        head->next = nullptr;
        return newhead;
    }
};

 四、两两交换链表中的结点

专题一:递归【递归、搜索、回溯】,递归搜索回溯,算法

分析跟上一题差不多,不详解。

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* swapPairs(ListNode* head) {
        if(head == nullptr || head->next == nullptr) return head;
        ListNode*newhead = swapPairs(head->next->next);
        auto ret = head->next; 
        head->next->next = head;
        head->next = newhead;
        return ret;
    }

 五、快速幂

实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,x^n )。

专题一:递归【递归、搜索、回溯】,递归搜索回溯,算法

专题一:递归【递归、搜索、回溯】,递归搜索回溯,算法 

专题一:递归【递归、搜索、回溯】,递归搜索回溯,算法 

class Solution {
public:
    double pow(double x,long long n)
    {
        if(n == 0)return 1.0;
        double tmp = pow(x,n/2);
        return n%2 == 0? tmp*tmp:tmp*tmp*x; 
    }
    double myPow(double x, int n) {
        if(n < 0) return 1.0/(pow(x,-(long long)n));
        return pow(x,n);
    }
};

 文章来源地址https://www.toymoban.com/news/detail-728849.html

到了这里,关于专题一:递归【递归、搜索、回溯】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 专题二:二叉树的深搜【递归、搜索、回溯】

    深度优先遍历 (DFS,全称为DepthFirstTraversal),是我们树或者图这样的数据结构中常用的⼀种遍历算法。这个算法会尽可能深的搜索树或者图的分⽀,直到⼀条路径上的所有节点都被遍历完毕,然后再回溯到上⼀层,继续找⼀条路遍历。 在⼆叉树中,常⻅的深度优先遍历为:

    2024年02月07日
    浏览(39)
  • 【算法系列篇】递归、搜索和回溯(二)

    前面为大家介绍了关于递归的知识,以及使用递归解决了几个问题,那么这篇文章将带大家巩固一下关于递归的知识。 https://leetcode.cn/problems/swap-nodes-in-pairs/description/ 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。 你必须在不修改节点内部的值的情况

    2024年02月05日
    浏览(39)
  • 【算法系列篇】递归、搜索和回溯(三)

    前面我已经给大家分享了两篇关于递归、搜索和回溯相关的问题,但是前面两篇只涉及到了递归,搜索和回溯基本还没涉及到,大家先别着急,后面的文章会为大家分享关于搜索和回溯相关的知识和题目。今天这篇文章主要涉及到的就是关于在递归过程中的剪枝问题。 二叉树

    2024年02月04日
    浏览(37)
  • 【算法系列篇】递归、搜索和回溯(四)

    前面我们通过几个题目基本了解了解决递归类问题的基本思路和步骤,相信大家对于递归多多少少有了更加深入的了解。那么本篇文章我将为大家分享结合决策树来解决递归、搜索和回溯相关的问题。 决策树是一种基本的分类与回归方法。在分类问题中,决策树通过构建一棵

    2024年02月04日
    浏览(46)
  • 【算法系列篇】递归、搜索与回溯(一)

    递归算法是一种通过重复将问题分解为同类的子问题而解决问题的方法。递归式方法可以被用于解决很多的计算机科学问题,因此它是计算机科学中十分重要的一个概念。绝大多数编程语言支持函数的自调用,在这些语言中函数可以通过调用自身来进行递归。 搜索算法是利用

    2024年02月04日
    浏览(46)
  • 递归专题训练详解(回溯,剪枝,深度优先)

    在经典汉诺塔问题中,有 3 根柱子及 N 个不同大小的穿孔圆盘,盘子可以滑入任意一根柱子。一开始,所有盘子自上而下按升序依次套在第一根柱子上(即每一个盘子只能放在更大的盘子上面)。移动圆盘时受到以下限制: (1) 每次只能移动一个盘子; (2) 盘子只能从柱子顶端滑出

    2024年02月07日
    浏览(46)
  • 递归回溯两个例题:1.数组组合 2.在矩阵中搜索单词

    题目1:组合 给定两个整数 n 和 k ,返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 输入:n = 4, k = 2 输出: [   [2,4],   [3,4],   [2,3],   [1,2],   [1,3],   [1,4], ]  解题思路: 1.定义一个temp数组,存放临时的组合结果 2.两种选择:1.选择当前元素2.不选

    2024年02月15日
    浏览(42)
  • 【算法专题】回溯算法

    什么是回溯算法? 回溯算法是⼀种经典的递归算法,通常用于解决组合问题、排列问题和搜索问题等。回溯算法的基本思想:从一个初始状态开始,按照一定的规则向前搜索,当搜索到某个状态无法前进时,回退到前一个状态,再按照其他的规则搜索。回溯算法在搜索过程中

    2024年02月03日
    浏览(44)
  • 算法与数据结构——递归算法+回溯算法——八皇后问题

    八皇后问题是一个经典的回溯算法问题,目的是在8×8的国际象棋棋盘上放置八个皇后,使得没有皇后可以互相攻击(即没有两个皇后在同一行、同一列或同一对角线上)。 回溯算法是一种解决问题的算法,它通过尝试所有可能的解决方案来解决问题。在八皇后问题中,计算

    2024年02月09日
    浏览(52)
  • 算法 矩阵最长递增路径-(递归回溯+动态规划)

    牛客网: BM61 求矩阵的最长递增路径 解题思路: 1. 遍历二维矩阵每个位置,max求出所有位置分别为终点时的最长路径 2. 求某个位置为终点的最长路径时,使用动态规划dp对已经计算出的位置进行记录 3. 处理某个位置的最长路径时,如果dp[i][j]位置已有值,则直接返回即可,否则

    2024年02月07日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包