【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(3,二维随机变量函数的分布)

这篇具有很好参考价值的文章主要介绍了【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(3,二维随机变量函数的分布)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


七、二维随机变量函数的分布

7.1 二维随机变量函数分布的基本情形

( X , Y ) (X,Y) (X,Y) 为二维随机变量,以 X , Y X,Y X,Y 为变量所构成的二元函数 Z = φ ( X , Y ) Z=\varphi(X,Y) Z=φ(X,Y) ,称为随机变量 ( X , Y ) (X,Y) (X,Y) 的函数,其分布一般有如下几种情形:

( X , Y ) (X,Y) (X,Y) 为二维离散型随机变量

( X , Y ) (X,Y) (X,Y) 联合分布律为 P { X = x i , Y = y j ) = p i j P\{X=x_i,Y=y_j)=p_{ij} P{X=xi,Y=yj)=pij ,则 Z = φ ( X , Y ) Z=\varphi(X,Y) Z=φ(X,Y) 的分布律如下: Z ∼ ( φ ( x 1 , y 1 ) φ ( x 1 , y 2 ) ⋯ φ ( x m , y 1 ) ⋯ p 11 p 12 ⋯ p m 1 ⋯ ) , Z\sim \begin{pmatrix} \varphi(x_1,y_1) & \varphi(x_1,y_2) & \cdots & \varphi(x_m,y_1) & \cdots\\ p_{11} & p_{12} & \cdots & p_{m1} & \cdots \end{pmatrix}, Z(φ(x1,y1)p11φ(x1,y2)p12φ(xm,y1)pm1), 相同的取值需要合并。

( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量

( X , Y ) (X,Y) (X,Y) 联合密度函数为 f ( x , y ) f(x,y) f(x,y)

(1)当 Z = φ ( X , Y ) Z=\varphi(X,Y) Z=φ(X,Y) 为离散型时

求出 Z Z Z 的所有可能取值,再求出其对应的概率。

(2)当 Z = φ ( X , Y ) Z=\varphi(X,Y) Z=φ(X,Y) 为连续型时

首先计算 Z Z Z 的分布函数 F Z ( z ) = P { Z ≤ z } = ∬ φ ( x , y ) ≤ z f ( x , y ) d x d y F_Z(z)=P\{Z\leq z\}=\iint_{\varphi(x,y)\leq z}f(x,y)dxdy FZ(z)=P{Zz}=φ(x,y)zf(x,y)dxdy ,那么 Z Z Z 的密度函数为: f Z ( z ) = { F Z ′ ( z ) , z 为可导点 0 , z 为不可导点 f_Z(z)=\begin{cases} F'_Z(z),&z为可导点 \\ 0,&z为不可导点 \end{cases} fZ(z)={FZ(z),0,z为可导点z为不可导点

X X X 为离散型变量, Y Y Y 为连续型变量

给出 X X X 的分布律, Y Y Y 的概率密度,求 Z = φ ( X , Y ) Z=\varphi(X,Y) Z=φ(X,Y) 的分布时,一般用全概率公式。

X ∼ ( x 1 x 2 ⋯ x n p 1 p 2 ⋯ p n ) , X\sim \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ p_{1} & p_2 & \cdots & p_{n} \end{pmatrix}, X(x1p1x2p2xnpn), Y Y Y 的边缘密度为 f Y ( y ) f_Y(y) fY(y) ,则有 F Z ( z ) = P { φ ( X , Y ) ≤ z } = P { X = x 1 , φ ( x 1 , Y ) ≤ z } + P { X = x 2 , φ ( x 2 , Y ) ≤ z } F_Z(z)=P\{\varphi(X,Y)\leq z\}=P\{X=x_1,\varphi(x_1,Y)\leq z\}+P\{X=x_2,\varphi(x_2,Y)\leq z\} FZ(z)=P{φ(X,Y)z}=P{X=x1,φ(x1,Y)z}+P{X=x2,φ(x2,Y)z} + ⋯ + P { X = x n , φ ( x n , Y ) ≤ z } . +\cdots+P\{X=x_n,\varphi(x_n,Y)\leq z\}. ++P{X=xn,φ(xn,Y)z}.

7.2 常见二维随机变量的函数及其分布

Z = min ⁡ { X , Y } Z=\min\{X,Y\} Z=min{X,Y} 的分布

F Z ( z ) = P { Z ≤ z } = 1 − P { Z > z } = P { X > z , Y > z } = 1 − ∬ x > z , y > z f ( u , v ) d u d v F_Z(z)=P\{Z\leq z\}=1-P\{Z>z\}=P\{X>z,Y>z\}=1-\iint_{x>z,y>z}f(u,v)dudv FZ(z)=P{Zz}=1P{Z>z}=P{X>z,Y>z}=1x>z,y>zf(u,v)dudv ,特别地,当 X , Y X,Y X,Y 相互独立时,有 F Z ( z ) = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] F_Z(z)=1-[1-F_X(z)][1-F_Y(z)] FZ(z)=1[1FX(z)][1FY(z)]

这个变换还是比较巧妙的,同样这也提示我们,对于这类求最大最小的分布,可以去做类似处理。

Z = max ⁡ { X , Y } Z=\max\{X,Y\} Z=max{X,Y} 的分布

F Z ( z ) = P { Z ≤ z } = P { X ≤ z , Y ≤ z } = ∫ − ∞ z d x ∫ − ∞ z f ( x , y ) d y F_Z(z)=P\{Z\leq z\}=P\{X\leq z,Y\leq z\}=\int_{-\infty}^zdx\int_{-\infty}^zf(x,y)dy FZ(z)=P{Zz}=P{Xz,Yz}=zdxzf(x,y)dy ,特别地,当 X , Y X,Y X,Y 独立时,有 F Z ( z ) = F X ( z ) F Y ( z ) . F_Z(z)=F_X(z)F_Y(z). FZ(z)=FX(z)FY(z).

Z = X + Y Z=X+Y Z=X+Y 的分布

F Z ( z ) = P { X + Y ≤ z } = ∬ x + y ≤ z f ( x , y ) d x d y . F_Z(z)=P\{X+Y\leq z\}=\iint_{x+y\leq z}f(x,y)dxdy. FZ(z)=P{X+Yz}=x+yzf(x,y)dxdy.

Z = X Y Z=XY Z=XY 的分布

【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(3,二维随机变量函数的分布),# 数学一,概率论,考研数学,二维随机变量及其分布,二维随机变量函数的分布

Z = Y X Z=\frac{Y}{X} Z=XY 的分布

【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(3,二维随机变量函数的分布),# 数学一,概率论,考研数学,二维随机变量及其分布,二维随机变量函数的分布

下面给出一些常见的二维随机变量的函数分布:

X , Y X,Y X,Y 独立,则:

(1)若 X ∼ B ( m , p ) , Y ∼ B ( n , p ) X\sim B(m,p),Y\sim B(n,p) XB(m,p),YB(n,p) ,则 X + Y ∼ B ( m + n , p ) . X+Y \sim B(m+n,p). X+YB(m+n,p).

(2)若 X ∼ P ( λ 1 ) , Y ∼ P ( λ 2 ) X\sim P(\lambda_1),Y\sim P(\lambda_2) XP(λ1),YP(λ2) ,则 X + Y ∼ P ( λ 1 + λ 2 ) . X+Y \sim P(\lambda_1+\lambda_2). X+YP(λ1+λ2).


写在最后

那到此,二维随机变量的理论内容就结束啦,掌握一维随机变量,再加上高数的二重积分的基础,这一章应该就问题不大。文章来源地址https://www.toymoban.com/news/detail-729267.html

到了这里,关于【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(3,二维随机变量函数的分布)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【考研数学】概率论与数理统计 —— 第七章 | 参数估计(2,参数估计量的评价、正态总体的区间估计)

    【考研数学】概率论与数理统计 —— 第七章 | 参数估计(2,参数估计量的评价、正态总体的区间估计)

    设 X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,cdots ,X_n) ( X 1 ​ , X 2 ​ , ⋯ , X n ​ ) 为来自总体 X X X 的简单随机样本, θ theta θ 为未知参数,设 θ ^ = φ ( X 1 , X 2 , ⋯   , X n ) widehat{theta}=varphi(X_1,X_2,cdots,X_n) θ = φ ( X 1 ​ , X 2 ​ , ⋯ , X n ​ ) 为参数 θ theta θ 的一个点估

    2024年02月06日
    浏览(13)
  • 【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布)

    【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布)

    承接前文,我们继续学习第二章,一维随机变量及其分布的第二部分内容。 (一)(0-1)分布 设随机变量 X X X 的可能取值为 0 或 1 ,且其概率为 P P P { X = 1 X=1 X = 1 } = p , =p, = p , P P P { X = 0 X=0 X = 0 } = 1 − p ( 0 p 1 =1-p(0 p 1 = 1 − p ( 0 p 1 ,称 X X X 服从(0-1)分布,记为 X ∼ B

    2024年02月11日
    浏览(10)
  • 【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)

    【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)

    隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个月了。主要是想着高数做到多元微分和二重积分题目,再来看这个概率论二维的来,更好理解。不过没想到内容太多了,到现在也只到二元微分的进度。 定义 1 —— 二维随机变量。设 X , Y X,Y X , Y 为定义于同一样本空

    2024年02月07日
    浏览(16)
  • 概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

    概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

    设随机变量X的所有可能取值为0与1两个值,其分布律为 若分布律如上所示,则称X服从以P为参数的(0-1)分布或两点分布。记作X~ B(1,p) 0-1分布的分布律利用表格法表示为: X 0 1 P 1-P P 0-1分布的数学期望 E(X) = 0 * (1 - p) + 1 * p = p 二项分布的分布律如下所示: 其中P是事件在一次试验

    2024年02月05日
    浏览(19)
  • 概率论与数理统计_数理统计部分

    概率论与数理统计_数理统计部分

    目录 相关符号 相关概念与例题 背景 总体与样本 统计量 统计量 常用统计量【重点】 直方图 经验分布函数 正态总体的抽样分布 前言复习 𝝌𝟐分布 𝒕分布 𝑭分布 上侧分位点 抽样分布定理【重点】 点估计 前言 点估计【重点】 矩估计方法【重点】 极大似然估计方法【重

    2024年02月10日
    浏览(12)
  • 概率论与数理统计 第一章 概率论的基本概念

    概率论与数理统计 第一章 概率论的基本概念

    1.1.1 前言 1.研究对象: 确定性现象:必然发生或不发生 随机现象:个别试验结果呈现不确定性,大量试验结果呈现统计规律性 2.概率论与数理统计: ​ 该学科是研究和揭示随机现象统计规律性的学科。 1.1.2 随机试验 1.定义: 可以在相同条件下重复进行; 每次试验的结果可

    2024年03月20日
    浏览(25)
  • 《概率论与数理统计》学习笔记

    《概率论与数理统计》学习笔记

    重温《概率论与数理统计》进行查漏补缺,并对其中的概念公式等内容进行总结,以便日后回顾。 目录 第一章 概率论的基本概念 第二章 随机变量及其分布 第三章  多维随机变量及其分布 第四章  随机变量的数字特征 第五章  大数定律及中心极限定理 第六章  样本及抽样

    2024年02月03日
    浏览(27)
  • 概率论与数理统计期末复习

    概率论与数理统计期末复习

    泊松分布 连续性随机变量概率密度 概率密度积分求分布函数,概率密度函数积分求概率,分布函数端点值相减为概率 均匀分布 正太分布标准化 例题 离散型随机变量函数的分布 概率密度求概率密度 先积分,再求导 例题 二维离散型随机变量的分布 联合分布律 离散型用枚举

    2024年02月08日
    浏览(17)
  • 【概率论和数理统计-基本概念】

    【概率论和数理统计-基本概念】

    自然界的 现象 分为两类,一类是 确定现象 ,如正负电荷的吸引;一类是 随机现象 ,如抛硬币出现正负。 研究后发现,随机现象也有 统计规律性 。 随机试验 随机现象(通过随机试验,来研究随机现象。) 样本空间 样本点 随机事件(特定情况下,样本空间的一个子集。

    2024年02月03日
    浏览(28)
  • 概率论与数理统计:第一章:随机事件及其概率

    概率论与数理统计:第一章:随机事件及其概率

    ①古典概型求概率 ②几何概型求概率 ③七大公式求概率 ④独立性 (1)随机试验、随机事件、样本空间 1. 随机试验 E 2. 随机事件 A、B、C ① 必然事件 Ω : P ( Ω ) = 1 P(Ω)=1 P ( Ω ) = 1 ② 不可能事件 Ø : P ( Ø ) = 0 P(Ø)=0 P ( Ø ) = 0 3.样本空间 ① 样本点 ω = 基本事件 ② 样本空间

    2024年02月14日
    浏览(14)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包