决策树剪枝:解决模型过拟合【决策树、机器学习】

这篇具有很好参考价值的文章主要介绍了决策树剪枝:解决模型过拟合【决策树、机器学习】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

如何通过剪枝解决决策树的过拟合问题

决策树是一种强大的机器学习算法,用于解决分类回归问题。决策树模型通过树状结构的决策规则来进行预测,但在构建决策树时,常常会出现过拟合的问题,即模型在训练数据上表现出色,但在未见过的数据上表现不佳。

过拟合的威胁

在机器学习中,过拟合是一个常见的问题,它指的是模型在训练数据上表现良好,但泛化到未见过的数据时却表现不佳。这是因为决策树往往会努力尽可能精确地拟合每个训练样本,导致生成的树太复杂,捕捉到了噪声和训练集中的随机变化,而不仅仅是真实的数据模式。

决策树剪枝:解救模型过拟合

决策树剪枝是一种降低决策树复杂度的技术,有助于防止在训练数据上的过度拟合。剪枝的目标是去除一些决策树的分支(或称为决策规则),以降低树的深度和复杂性,从而提高模型的泛化能力。简而言之,剪枝通过减少对训练数据中特定情况的过度拟合来实现模型的更广泛适用性。

1. 前剪枝

前剪枝是在决策树构建的过程中,在分裂节点之前就采取措施,以防止树变得过于复杂。前剪枝方法包括设置最大深度、最小叶子节点数或分裂节点所需的最小样本数。通过这些条件限制,我们可以在树的生长过程中避免不必要的分支,从而减小过拟合的风险。

示例: 在一个婚恋网站的数据集中,我们使用决策树来预测用户是否会发起第二次约会。前剪枝可以限制决策树的深度,确保不会针对过小的数据子集生成过多的分支,从而提高模型的泛化能力。

from sklearn.tree import DecisionTreeClassifier

# 创建一个决策树分类器,并设置最大深度为5
tree_classifier = DecisionTreeClassifier(max_depth=5)

# 训练模型
tree_classifier.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = tree_classifier.predict(X_test)

2. 后剪枝

后剪枝是在构建完整决策树之后,通过删除不必要的分支来减小树的复杂性。后剪枝方法首先构建一个完全生长的决策树,然后通过计算分支的不纯度(如基尼不纯度或熵),并对比不同剪枝方案的性能,选择合适的分支进行剪枝。虽然这种方法更计算密集,但通常能够获得更精确的剪枝结果。

示例: 在医疗诊断中,我们使用决策树来预测患者是否患有特定疾病。后剪枝可以帮助我们去除那些对最终诊断没有显著贡献的分支,使模型更容易理解和解释。

from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import _tree

def prune_index(inner_tree, index, threshold):
    if inner_tree.value[index].min() < threshold:
        # 将子树叶子节点设置为空
        inner_tree.children_left[index] = _tree.TREE_LEAF
        inner_tree.children_right[index] = _tree.TREE_LEAF

# 创建一个决策树分类器,并训练完整树
tree_classifier = DecisionTreeClassifier()
tree_classifier.fit(X_train, y_train)

# 设置剪枝的阈值
prune_threshold = 0.01

# 后剪枝
prune_index(tree_classifier.tree_, 0, prune_threshold)

# 在测试集上进行预测
y_pred = tree_classifier.predict(X_test)

区别与总结

前剪枝和后剪枝都可以用来解决决策树的过拟合问题,但它们在实施上有一些区别:

  • 前剪枝是在决策树构建的过程中采取的措施,它可以在树的生长过程中避免不必要的分支,从而限制了复杂性。

  • 后剪枝是在完整决策树构建后进行的,通过删除不必要的分支来减小树的复杂性,通常需要计算不纯度并比较不同剪枝方案的性能。文章来源地址https://www.toymoban.com/news/detail-729439.html

到了这里,关于决策树剪枝:解决模型过拟合【决策树、机器学习】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • python机器学习(六)决策树(上) 构造树、信息熵的分类和度量、信息增益、CART算法、剪枝

    python机器学习(六)决策树(上) 构造树、信息熵的分类和度量、信息增益、CART算法、剪枝

    模拟相亲的过程,通过相亲决策图,男的去相亲,会先选择性别为女的,然后依次根据年龄、长相、收入、职业等信息对相亲的另一方有所了解。 通过决策图可以发现,生活中面临各种各样的选择,基于我们的经验和自身需求进行一些筛选,把判断背后的逻辑整理成结构图,

    2024年02月14日
    浏览(9)
  • 机器学习&&深度学习——模型选择、欠拟合和过拟合

    机器学习&&深度学习——模型选择、欠拟合和过拟合

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——多层感知机的简洁实现 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 在机器学习中,我们的目标是发现 模式 。但是,我们需要确定模型不只是简单记住了数据,

    2024年02月15日
    浏览(9)
  • 决策树模型(3)决策树的生成与剪枝

    决策树模型(3)决策树的生成与剪枝

    有了信息增益和信息增益比,我就可以以此衡量特征的相对好坏,进而可以用于决策树的生成。相对应的基于信息增益计算的方法所生成的决策树的算法我们叫做ID3算法,而基于信息增益的算法我们叫做C4.5,二者唯一的区别就在于一个使用信息增益衡量特征好坏而另外一个使

    2024年03月28日
    浏览(9)
  • 过拟合和欠拟合:机器学习模型中的两个重要概念

    过拟合和欠拟合:机器学习模型中的两个重要概念

    在机器学习模型中,过拟合和欠拟合是两种常见的问题。它们在模型训练和预测过程中扮演着重要的角色。了解过拟合和欠拟合的概念、影响、解决方法以及研究现状和趋势,对于提高机器学习模型性能和实用性具有重要意义。 过拟合是指机器学习模型在训练数据上表现优良

    2024年02月09日
    浏览(14)
  • 机器学习模型—决策树

    机器学习模型—决策树

    决策树是最强大和最流行的算法之一。Python 决策树算法属于监督学习算法的范畴。它适用于连续输出变量和分类输出变量也就是可以处理分类和回归任务。在本文中,我们将在 UCI 上提供平 衡秤体重和距离数据 库上用 Python 算法实现决策树。 决策树算法,是模拟人们做决策

    2024年03月14日
    浏览(8)
  • 机器学习--决策树、线性模型、随机梯度下降

    机器学习--决策树、线性模型、随机梯度下降

    🤵‍♂️ 个人主页:@Lingxw_w的个人主页 ✍🏻作者简介:计算机科学与技术研究生在读 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+    目录  一、决策树 二、线性模型 三、随机梯度下降 决策树(decision

    2024年02月03日
    浏览(24)
  • 机器学习中常见的过拟合解决方法

    机器学习中常见的过拟合解决方法

    在机器学习中,我们将模型在训练集上的误差称之为训练误差,又称之为经验误差,在新的数据集(比如测试集)上的误差称之为泛化误差,泛化误差也可以说是模型在总体样本上的误差。对于一个好的模型应该是经验误差约等于泛化误差,也就是经验误差要收敛于泛化误差

    2024年01月20日
    浏览(11)
  • 【机器学习300问】17、什么是欠拟合和过拟合?怎么解决欠拟合与过拟合?

    【机器学习300问】17、什么是欠拟合和过拟合?怎么解决欠拟合与过拟合?

            一个问题出现了,我们首先要描述这个问题,然后分析问题出现的原因,找到原因后提出解决方案。废话不多说,直接上定义,然后通过回归和分类任务的例子来做解释。         欠拟合(Underfitting)指的是模型在训练过程中未能捕捉到数据集中的有效规律或模

    2024年01月25日
    浏览(14)
  • 【机器学习】07. 决策树模型DecisionTreeClassifier(代码注释,思路推导)

    【机器学习】07. 决策树模型DecisionTreeClassifier(代码注释,思路推导)

    『机器学习』分享机器学习课程学习笔记,逐步讲述从简单的线性回归、逻辑回归到 ▪ 决策树算法 ▪ 朴素贝叶斯算法 ▪ 支持向量机算法 ▪ 随机森林算法 ▪ 人工神经网络算法 等算法的内容。 欢迎关注 『机器学习』 系列,持续更新中 欢迎关注 『机器学习』 系列,持续

    2024年02月05日
    浏览(8)
  • 决策树模型的实现原理、构建方法、正则化方法、模型选择方法、过拟合和欠拟合的防护措施等

    作者:禅与计算机程序设计艺术 1986年, 提出了一种分类和回归方法——决策树(decision tree)。这个方法在1987年用于西瓜数据分类,发现了其中的奥秘,并将它称为“统计学习”的基础。后来,越来越多的人用这种方法解决实际问题,其中包括信用评级、垃圾邮件过滤、疾

    2024年02月07日
    浏览(14)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包