数学建模:线性与非线性优化算法

这篇具有很好参考价值的文章主要介绍了数学建模:线性与非线性优化算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

数学建模:线性与非线性优化算法

优化算法是指在满足一定条件下,在众多方案中或者参数中最优方案,或者参数值,以使得某个或者多个功能指标达到最优,或使得系统的某些性能指标达到最大值或者最小值

优化的两个关键点:

1.明确优化的目标函数
2.明确优化变量之间需要满足的约束

线性优化

使用函数:linprog

函数原型:

[x,fval]=linprog(f,A,b,Aeq,Beq,LB,UB)
  • x:求得最优情况下变量的解
  • fval:求得最优目标值
  • f:目标函数的系数(符号按最小值标准,若目标是求解机大值可以通过添加负号改成求极小值)
  • A:不等式约束的变量系数(符合按小于标准,如果是大于约束可通过加负号变成小于)
  • b:不等式约束的常量
  • Aeq:等式约束的变量系数
  • Beq:等式约束的常量
  • LB:变量的下限
  • UB:变量的上限

例如我们需要计算求解如下线性函数的最优解:

m i n { − x 1 − 2 x 2 + 3 x 3 } x 1 + x 2 ⩾ 3 x 2 + x 3 ⩾ 3 x 1 + x 3 = 4 0 ≤ x 1 , x 2 , x 3 ≤ 2 \begin{gathered}min\{-x_1-2x_2+3x_3\} \\x_1+x_2\geqslant3 \\x_2+x_3\geqslant3 \\x_1+x_3=4 \\0\leq x_1,x_2,x_3\leq2 \end{gathered} min{x12x2+3x3}x1+x23x2+x33x1+x3=40x1,x2,x32

clc;clear;

f = [-1;-2;3];
%% 不等式约束
A = [-1,-1,0;0,-1,-1];
B = [-3,-3];

%% 等式约束
Aeq = [1,0,1];
Beq = [4];

%% 上下限
LB = zeros(3,1);
UB = 2*ones(3,1);

%% 线性优化
[x,fval] = linprog(f,A,B,Aeq,Beq,LB,UB);

%% 输出结果

objstr = ['目标函数最优值:',num2str(fval)];
disp(objstr);
for i = 1:length(x)
    xstr = ['x',num2str(i),'的系数为: ',num2str(x(i))];
    disp(xstr);
end

非线性优化

fmincon是MATLAB的非线性规划求解函数

[x,fval]=fmincon(fun,x0,A,b,Aeq,Beq,LB,UB,nonlcon)
  • x:求得最优情况下变量的解
  • fval:求得最优目标值
  • fun:目标函数(符号按最小值标准,若目标是求解机大值可以通过添加负号改成求极小值)
  • x0:初始解
  • A:不等式约束的变量系数(符合按小于标准,如果是大于约束可通过加负号变成小于)
  • b:不等式约束的常量
  • Aeq:等式约束的变量系数
  • Beq:等式约束的常量
  • LB:变量的下限
  • UB:变量的上限
  • nonlcon :非线性约束函数表达式

m a x { x 1 2 − x 2 2 + x 2 x 3 } 2 x 1 + x 2 + 3 x 3 ≤ 6 x 1 2 + x 1 x 2 + x 2 x 3 ≤ x 2 + 6 0 ≤ x 1 , x 2 , x 3 ≤ 1 \begin{gathered}max\begin{Bmatrix}x_1^2-x_2^2+x_2x_3\end{Bmatrix} \\2x_1+x_2+3x_3\leq6 \\x_1^2+x_1x_2+x_2x_3\leq x_2+6 \\0\leq x_1,x_2,x_3\leq1 \end{gathered} max{x12x22+x2x3}2x1+x2+3x36x12+x1x2+x2x3x2+60x1,x2,x31文章来源地址https://www.toymoban.com/news/detail-729762.html

clc;clear;

% 指定初始解
x0 = zeros(3,1);
%% <线性>不等约束
A = [2,1,3];
B = [6];

%% <线性>等式约束
Aeq = [];
Beq = [];

%% 变量上下限
LB = zeros(3,1);
UB = 1*ones(3,1);

%% 整体非线性优化目标函数
fun = @(x) -x(1)^2-x(2)^2+x(2)*x(3);

%% 取得非线性不等式约束函数
nonlcon = @noLinearLimited;
[x,fval] = fmincon(fun,x0,A,B,Aeq,Beq,LB,UB,nonlcon);

objstr=['目标函数最优值:',num2str(-fval)];
disp(objstr)
for i=1:length(x)
    xstr=['x',num2str(i),'的值为:',num2str(x(i))];
    disp(xstr)
end

%% 非线性不等式约束的表达式,如果有多个,则在C后面加; 补充即可
function [C,Ceq] = noLinearLimited(x)
    C = [x(1)^2+x(1)*x(2)+x(2)*x(3)-x(2)-6];
    Ceq = [];
end

到了这里,关于数学建模:线性与非线性优化算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模学习---非线性规划

    目录 前言 一、非线性规划问题是什么? 二、非线性规划的数学模型 1.一般形式 三、线性规划的 Matlab 解法 Matlab 中非线性规划的数学模型: 2.Matlab 中的命令: 本篇讲述非线性规划问题极其matlab解法 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规

    2024年02月06日
    浏览(57)
  • 数学建模| 非线性规划(Matlab)

    非线性规划:约束条件和目标函数存在非线性函数。简单点说,约束条件和目标函数中至少一个决策变量不是一次方,例如三角函数、对数、多次方等。 线性规划和非线性在解决上的不同:线性规划可以有通用方法,但是非线性规划的求解是没有特定算的,只能用近似的算法

    2024年02月07日
    浏览(49)
  • 三、数学建模之非线性规划

    1、定义 2、例题matlan代码求解 1.非线性规划 (Nonlinear Programming,简称NLP)是一种数学优化问题的方法,它处理的目标函数或约束条件包含非线性项。与线性规划不同,非线性规划涉及到在非线性约束下寻找最优解。在许多领域都有广泛的 应用,包括工程、经济学、物流、金

    2024年01月16日
    浏览(52)
  • 数学建模整理-线性规划、整数规划、非线性规划

    在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。若目标函数及约束条件均为线性函数,则称为线性规划(Linear Programming 简记 LP)。 可行解 :满足约束条件的解。 可行预 :所有可行解构成的集合称为问题的可行域,记为R。 图解法

    2024年02月06日
    浏览(40)
  • 数学建模__非线性规划Python实现

    线性规划指的是目标模型均为线性,除此以外的都是非线性规划,使用scipy提供的方法对该类问题进行求解。

    2024年02月07日
    浏览(51)
  • 【数学建模】Python+Gurobi求解非线性规划模型

    目录 1 概述 2 算例  2.1 算例 2.2 参数设置 2.3 Python代码实现 2.4 求解结果 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。 参考:(非线性规划Python)计及动态约束及节能减排环保要求的经济调度 2.1 算例 2.2 参数设置 求解NLP/非凸问题时,

    2024年02月09日
    浏览(47)
  • 【视觉SLAM入门】5.2. 2D-3D PNP 3D-3D ICP BA非线性优化方法 数学方法SVD DLT

    前置事项: 该问题描述为:当我们知道n 个 3D 空间点以及它们的投影位置时,如何估计相机所在的位姿 1.1.1 DLT(直接线性变换法) 解决的问题:已知空间点 P = ( X , Y , Z , 1 ) T P = (X, Y, Z, 1)^T P = ( X , Y , Z , 1 ) T 和它投影点 x 1 = ( u 1 , v 1 , 1 ) T x_1 = (u_1, v_1, 1)^T x 1 ​ = ( u 1 ​ , v 1

    2024年02月12日
    浏览(48)
  • 计算机视觉与深度学习 | 非线性优化理论:图优化、高斯牛顿法和列文伯格-马夸尔特算法

    ===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 计算机视觉与深度学习 | SLAM国内外研究现状 计算机视觉与深度学习 | 视觉惯性SLAM的基础理论 计算机

    2024年02月08日
    浏览(52)
  • 【Matlab算法】L-M法求解非线性最小二乘优化问题(附L-M法MATLAB代码)

    博主 一头小山猪 目前已开放所有文章:小山猪——经典算法专栏 活动地址:CSDN21天学习挑战赛 L-M法 (Levenberg-Marquardt法)原理 当矩阵 ( J k ) T J k left(J_{k}right)^{T} J_{k} ( J k ​ ) T J k ​ 为病态矩阵时,用G-N算法可能得不到正确的解,甚至当 ( J k ) T J k left(J_{k}right)^{T} J_{k} ( J

    2024年02月02日
    浏览(46)
  • 数学模型:Python实现非线性规划

    上篇文章:整数规划 文章摘要:非线性规划的Python实现。 参考书籍:数学建模算法与应用(第3版)司守奎 孙玺菁。 PS:只涉及了具体实现并不涉及底层理论。学习底层理论以及底层理论实现:可以参考1.最优化模型与算法——基于Python实现 渐令 粱锡军2.算法导论(原书第3版)

    2024年02月08日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包