图像处理与计算机视觉--第四章-图像滤波与增强-第一部分

这篇具有很好参考价值的文章主要介绍了图像处理与计算机视觉--第四章-图像滤波与增强-第一部分。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.灰度图亮度调整

2.图像模板匹配

3.图像裁剪处理

4.图像旋转处理

5.图像邻域与数据块处理


学习计算机视觉方向的几条经验:
1.学习计算机视觉一定不能操之过急,不然往往事倍功半!
2.静下心来,理解每一个函数/算法的过程和精髓,这个知识才真正是你的!
3.计算机视觉的参数非常多,你必须理解透并且学会运用,不然你只能做个调参侠!
4.做一件事就必须要从中学到什么,否则就算是再大的荣誉只是混来的,不真正属于你!
以上经验总结来自Neu.Ise.JiaT.Prof,也是Neu做cv的数一数二的教授了,希望能够带着这些经验继续前进,在cv的学习中有所感悟和收获!

1.灰度图亮度调整

灰度图介绍:
1.灰度图,又称灰阶图。把白色和黑色之间按照对数关系分为若干等级,称为灰度。
2.灰度一般是2的整数次幂并且每个像素采用8比特来表示,灰度可以被量化为256及。
3.改变像素的亮度值是增强图像的常用方法,采用某种函数变换进行增强即可,一般用的比较多的是指数函数。
4.以下我们将展示采用直方图进行增强的效果,对应的函数是histeq()函数。
histeq()函数:
J = histeq(I) 变换灰度图像 I,以使输出灰度图像J的直方图具有64个bin且大致平坦。
%%灰度图亮度调整
clear all
I = imread('tire.tif')
J = histeq(I)
figure
subplot(2,2,1)
imshow(I)
subplot(2,2,2)
imshow(J)
subplot(2,2,3)
imhist(I)
subplot(2,2,4)
imhist(J)
saveas(gcf,['C:\Users\Zeng Zhong Yan\Desktop\MATLAB\','histeq','.png'])

图像处理与计算机视觉--第四章-图像滤波与增强-第一部分,计算机视觉,计算机视觉,图像处理,人工智能

2.图像模板匹配

图像模板匹配
1.模板匹配就是在一个图像中识别出与模板相似的区域
因此我们设定输入输出如下所示:
输入:一张原始图像和模板图像
输出:在原始图像中找到与模板图像相似的区域
2.算法的原理也很简单,就是我们拿着模板和一个给定的标准,寻找最贴近标准的图像即可。
对于计算机来说,逐次比对的过程可以是,设置一个与模板相同大小的window, 按照一定的步长,
步长可以自己设定,向左向右依次滑动,会得到不同的子区域,然后逐次比对模板和子区域,找出
最好最符合的就是最为相似的。
%%
%%template matching
%本题的标准就定在0.9
clear
a = imread('a.tif')
[ma na]=size(a)%获取大小
I = imread('text.png')
figure
imshow(I)
[mi,ni]=size(I)%获取大小
afft=fft2(a)%二维傅里叶变换
Ifft=fft2(I)%二维傅里叶变换

%计算用于 FFT 的输出图像大小,这是两个图像大小之和减去1。
M = ma+mi-1
N = na+ni-1

%拓展到相同的维度
afft(M,N)=0
Ifft(M,N)=0
filtered=ifft2(afft.*Ifft)%对扩展后的频域数据进行逆傅里叶变换
filtered=filtered(1:mi,1:ni)%提取相同的大小区域,方便后续匹配
filtered=filtered/max(max(filtered,[],1))%归一化操作
%将匹配结果中大于0.9的像素设置为1,小于等于0.9的像素设置为0。
result=filtered>0.9
%绘制可视化图
figure
subplot(2,2,1)%模板
imshow(a)
subplot(2,2,2)%匹配图
imshow(I)
subplot(2,2,3)
imshow(filtered)%归一化图全部是0-1
subplot(2,2,4)
imshow(result)%结果图
saveas(gcf,['C:\Users\Zeng Zhong Yan\Desktop\MATLAB\','template_matching','.png'])

图像处理与计算机视觉--第四章-图像滤波与增强-第一部分,计算机视觉,计算机视觉,图像处理,人工智能

3.图像裁剪处理

图像的裁剪处理
1.图像的裁剪处理用到imresize()函数.
2.B = imresize(A,scale) 返回图像 B,它是将A的长宽大小缩放图像
scale倍之后的图像。输入图像 A 可以是灰度图像、RGB 图像、二值图像或分类图像。
%%
%图像裁剪
clear
figure
I = imread('ci.bmp')
J = imresize(I,0.5);%边缩小0.5倍
figure
imshow(I)
figure
imshow(J)

图像处理与计算机视觉--第四章-图像滤波与增强-第一部分,计算机视觉,计算机视觉,图像处理,人工智能

4.图像旋转处理


%%
和图像的裁剪差不多,我们也就不细讲了
%%
%图像旋转
clear
I = imread('ci.bmp')
I1 = imrotate(I,45);
% I1 = imresize(I,2,'nearest');
figure
subplot(1,2,1)
imshow(I)
subplot(1,2,2)
imshow(I1,[])
saveas(gcf,['C:\Users\Zeng Zhong Yan\Desktop\MATLAB\','iamge_imrptate','.png'])

图像处理与计算机视觉--第四章-图像滤波与增强-第一部分,计算机视觉,计算机视觉,图像处理,人工智能

5.图像邻域与数据块处理

5.图像邻域与数据块处理:
1.某些图像处理运算需要分段处理图像,而不是一次处理整个图像。
2.滑动邻域运算通过对每个像素邻域应用算法,以一次一个像素的方式处理图像。
3.在另一种数据块处理中,图像被分成大小相等且不重叠的数据块,并对每个不同数据块应用算法。
然后,对邻域和数据块进行重组以形成输出图像。
%%
%5.图像邻域与数据块处理
clear
I = imread('tire.tif')
f= inline('uint8(round(std2(x)*ones(size(x))))')
I2 = blkproc(I,[8,8],f)%邻域处理
%绘图可视化
figure
subplot(1,2,1)
imshow(I)
subplot(1,2,2)
imshow(I2,[])
saveas(gcf,['C:\Users\Zeng Zhong Yan\Desktop\MATLAB\','image block operation','.png'])

图像处理与计算机视觉--第四章-图像滤波与增强-第一部分,计算机视觉,计算机视觉,图像处理,人工智能文章来源地址https://www.toymoban.com/news/detail-729979.html

到了这里,关于图像处理与计算机视觉--第四章-图像滤波与增强-第一部分的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 目标检测 图像处理 计算机视觉 工业视觉

    从事ai视觉算法有几年了,本帖是对以往做过的计算机视觉项目的一些总结,硬件部署的大多是基于nvidia的开发板和GPU服务器上,如jetson nano,还有地平线J3J5和瑞芯微以及星辰的开发板,另外就是对实时性要求不高的部署在cpu上。有相关项目需求可以一起交流和学习。(+v 3

    2024年02月06日
    浏览(57)
  • 图像处理与计算机视觉算法

    图像处理与计算机视觉算法是实现对图像和视频内容分析、理解和操作的一系列技术。这些算法可以分为多个类别,包括但不限于以下几个主要方面: 预处理 : 像素操作:灰度化、二值化、直方图均衡化等,用于改善图像的对比度和亮度分布。 去噪:高斯滤波、中值滤波、

    2024年02月22日
    浏览(53)
  • 计算机视觉(2)——图像预处理

    二、图像预处理 2.1 介绍  2.2 特征提取方法 2.2.1 直方图 2.2.2 CLAHE 2.2.3 形态学运算 2.2.4 空间域处理及其变换 2.2.5 空间域分析及变换  (1) 均值滤波 (2)中值滤波 (3)高斯滤波 (4) 梯度Prewitt滤波 (5) 梯度Sobel滤波 (6) 梯度Laplacian滤波 (7) 其他滤波  2.2.6 频域分

    2024年02月03日
    浏览(64)
  • 图像处理/计算机视觉期刊投稿经验

    我不配,以后有机会再说吧。 我也不配,以后有机会再说吧。 2022年投过,一个月之后被编辑immediate reject, 原因是“the scope not aligning well with the theme interest and/or desired genres of TSP”。在邮件的末尾,编辑表示manuscript的选题“well motivated”并且“interesting”,主要担忧是所用到的

    2024年02月08日
    浏览(55)
  • 计算机视觉图像处理常用方法汇总

    光线进入眼睛:当光线从一个物体反射或散射出来,进入人的眼睛时,它们通过角膜和晶状体进入眼球内部。 聚焦光线:角膜和晶状体将光线聚焦在视网膜上。晶状体可以通过调整其形状来调节聚焦距离,使物体的图像清晰地映射在视网膜上。 光敏细胞感受光线:视网膜是

    2024年02月07日
    浏览(55)
  • 机器视觉、图像处理和计算机视觉:概念和区别

    机器视觉、图像处理和计算机视觉:概念和区别nbsp; 机器视觉、图像处理和计算机视觉是相关但有区别的概念。 机器视觉主要应用于工业领域,涉及图像感知、图像处理、控制理论和软硬件的结合,旨在实现高效的运动控制或实时操作。 图像处理是指利用计算机对图像进行

    2024年02月06日
    浏览(47)
  • 计算机视觉实验:图像处理综合-路沿检测

    目录 实验步骤与过程 1. 路沿检测方法设计 2. 路沿检测方法实现 2.1 视频图像提取 2.2 图像预处理 2.3 兴趣区域提取 2.4 边缘检测 ​​​​​​​2.5 Hough变换 ​​​​​​​2.6 线条过滤与图像输出 3. 路沿检测结果展示 4. 其他路沿检测方法 实验结论或体会 实验内容: 针对

    2024年02月14日
    浏览(49)
  • 【计算机视觉】【图像处理综合应用】路沿检测

    实验内容: 针对给定的视频,利用图像处理基本方法实现道路路沿的检测; 提示:可利用 Hough 变换进行线检测,融合路沿的结构信息实现路沿边界定位(图中红色的点位置)。 处理视频文件 处理视频文件的主要流程如下: 读取视频 → 逐帧提取 → 路沿检测 → 逐帧保存

    2024年02月05日
    浏览(59)
  • 图像处理与计算机视觉--第五章-图像分割-Canny算子

    2.1.Canny算子简单介绍 Canny算子是一种非常常用的边缘检测算子,其效果图如下所示: 2.2.Canny算子边缘检测指标 Canny算子是基于边缘检测来实现的,那么边缘检测的指标如下所示: (1)好的信噪比,即将非边缘点判定为边缘点的概率要低。 (2)高定位,检测出的边缘要在实际边缘中

    2024年02月07日
    浏览(56)
  • 【OpenCV】计算机视觉图像处理基础知识

    目录 前言 推荐 1、OpenCV礼帽操作和黑帽操作 2、Sobel算子理论基础及实际操作 3、Scharr算子简介及相关操作 4、Sobel算子和Scharr算子的比较 5、laplacian算子简介及相关操作 6、Canny边缘检测的原理 6.1 去噪 6.2 梯度运算 6.3 非极大值抑制 6.4 滞后阈值 7、Canny边缘检测的函数及使用

    2024年02月05日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包