分享一款开源的QT的串口示波器

这篇具有很好参考价值的文章主要介绍了分享一款开源的QT的串口示波器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分享一款开源的QT的串口示波器,完全开源,支持串口、TCP、波形显示、通信协议。

Sailor Project功能说明

分享一款开源的QT的串口示波器,开源

串口调试助手功能

  • 支持传统的串口调试助手的基本收发功能,同时可以刷新大量的数据而不卡顿

  • 支持保存接收的数据

  • 支持最大200条可编辑指令的设置,并用于多条发送

  • 支持定时器发送

  • 支持换行符替换时间戳功能

  • 支持较多的中文编码格式

  • 值得注意的是支持Linux简单的串口调试

  • 支持加载csv表格数据到200条可编辑指令

  • 支持部分窗口配置的保存和重启恢复(前提是你不会删除配置文件)

操作说明

注意由于QT自带文本显示窗口加载大量数据后会造成软件卡顿,现解决方案为设定一个显示缓冲区,在有刷新数据阶段(即串口接收数据阶段),如果需要保持刷新状态(即实时显示接收的数据),则仅显示显示缓冲区的内容,你可以使用鼠标移动向上滚动条,停止数据刷新,同时当你向上移动滚动条到一定程度,便会开始加载所有数据,如果你想再次触发实时刷新数据状态,只需要将滚动条移动到最低端,并确保有数据接收。

由于保存数据为显示界面的数据,如果处于刷新状态,则无法保存所有数据,正确的做法是关闭串口后,将滚动条移动到最顶端,加载全部数据,然后保存窗口数据。

TCPServer界面

分享一款开源的QT的串口示波器,开源

分享一款开源的QT的串口示波器,开源

分享一款开源的QT的串口示波器,开源

分享一款开源的QT的串口示波器,开源

分享一款开源的QT的串口示波器,开源

SEASKY串口通信协议

通信方式是串口,配置为波特率115200, 8位数据位, 1位停止位, 无硬件流控, 无校验位。

1、通信协议格式

帧头 设备类型 设备ID 数据ID 帧尾
protocol_header(4-byte) equipment_type(2-byte) equipment_id (2-byte) data_id(2-byte) frame_tail(2-byte,CRC16,整包校验)

2、帧头详细定义

分享一款开源的QT的串口示波器,开源

3、串口通信协议

int parse_protocol(protocol_struct* pProtocol,uint16_t parseDataLen)
{
    //解析数据,使用前需提前缓冲 pProtocol->message_st.pData
    int ret = -1;
    uint16_t pos_offset;
    frame_struct* pFrameStruct = &pProtocol->frame_st;
    message_struct* pMessageStruct = &pProtocol->message_st;
    if (check_protocol_heade(pMessageStruct->pData) == PROTOCOL_RESULT_OK)
    {
        //更新帧头数据
        pFrameStruct->header.sof            = pMessageStruct->pData[0];
        //获取data段的数据长度
        pFrameStruct->header.data_length    = (pMessageStruct->pData[2] << 8) | (pMessageStruct->pData[1]);
        pFrameStruct->header.crc_check      = pMessageStruct->pData[3];
        //获取此次数据包长度
        pMessageStruct->data_len = pFrameStruct->header.data_length + PROTOCOL_DATA_OFFSET + 2;
        //计算解析后得到的 data_union 数据长度
        pFrameStruct->frame_user.cmd_data.data_len = (pFrameStruct->header.data_length) / sizeof(data_union);
        if(pMessageStruct->data_len<=parseDataLen)
        {
            if (pMessageStruct->data_len <= pMessageStruct->max_data_len)
            {
                if(CRC16_Check_Sum(&pMessageStruct->pData[0], pMessageStruct->data_len) != 0)
                {
                    pFrameStruct->frame_user.equipment_type = (pMessageStruct->pData[5]<<8) | (pMessageStruct->pData[4]);
                    pFrameStruct->frame_user.equipment_id   = (pMessageStruct->pData[7] << 8) | (pMessageStruct->pData[6]);
                    pFrameStruct->frame_user.data_id        = (pMessageStruct->pData[9] << 8) | (pMessageStruct->pData[8]);
                    //拷贝 data段 指定长度数据
                    ret = (int)memcpy(&pFrameStruct->frame_user.cmd_data.pData[0], &pMessageStruct->pData[PROTOCOL_DATA_OFFSET], pFrameStruct->header.data_length);
                    pos_offset = pFrameStruct->header.data_length + PROTOCOL_DATA_OFFSET;
                    pFrameStruct->frame_tail = (pMessageStruct->pData[pos_offset+1] << 8) | (pMessageStruct->pData[pos_offset]);
                    return PROTOCOL_RESULT_OK;
                }
                else
                {
                    //待解析BUFF超过预定解析数据容量,避免内存越界
                    PROTOCOL_ERROR_PRINTF("parse_protocol->>CRC16_Check_Sum err!\n");
                    return PROTOCOL_RESULT_CHECK_FRAME_ERR;
                }
            }
            else
            {
                //待解析BUFF超过预定解析数据容量,避免内存越界
                PROTOCOL_ERROR_PRINTF("parse_protocol->>data_len[%d] > max_data_len[%d]!\n",
                    pMessageStruct->data_len,
                    pMessageStruct->max_data_len);
                return PROTOCOL_RESULT_OUT_OF_LEN;
            }
        }
        else
        {
            //通过包头计算,还未收到完整的数据包
//            PROTOCOL_ERROR_PRINTF("parse_protocol->>data_len[%d] > max_data_len[%d]!\n",
//                pMessageStruct->data_len,
//                pMessageStruct->max_data_len);
            return PROTOCOL_RESULT_OUT_OF_LEN;
        }
    }
    else
    {
        //待解析BUFF超过预定解析数据容量,避免内存越界
        PROTOCOL_ERROR_PRINTF("parse_protocol->>check_protocol_heade err!\n");
        return PROTOCOL_RESULT_CHECK_HEAD_ERR;
    }
    PROTOCOL_DEBUG_PRINTF("parse_protocol->>check_protocol_heade ok!\n");
    return PROTOCOL_RESULT_ERR;
}

软件截图

分享一款开源的QT的串口示波器,开源

分享一款开源的QT的串口示波器,开源

分享一款开源的QT的串口示波器,开源

分享一款开源的QT的串口示波器,开源

项目开源地址:文章来源地址https://www.toymoban.com/news/detail-730064.html

https://github.com/SEASKY-Master/vSailorProject

到了这里,关于分享一款开源的QT的串口示波器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于小梅哥Zynq开发板的简易自制示波器(代码已开源)

    本程序基于Xilinx zynq 7000系列芯片,结合12位8通道ADC采样芯片ADC128S102,实现了8选1通道的简易示波器功能。代码已开源,下载链接在文章顶部。 一、硬件组成 (1)小梅哥ACZ702-7020开发板 (2)小梅哥FPGA EDA扩展卡 (3)小梅哥5寸电容触摸显示屏 二、系统结构 1.PL部分: (1)将

    2024年02月08日
    浏览(41)
  • FPGA实现AD9708和AD9280波形收发输出HDMI模拟示波器,串口协议帧控制显示,提供工程源码和技术支持

    AD9708 很简单,8 位分辨率,125MSPS 采样率,输入参考电压3~5V,内置 1.2V 参考电压,8bit数字信号输入,差分电流输出;芯片操作不需要软件配置,给个时钟信号就工作,简单得很,根据官方手册,内部结构如下: SLEEP引脚提供芯片休眠功能,当不需要使用该芯片时可拉高SLEEP以

    2024年02月02日
    浏览(58)
  • 【数字示波器设计】——基于FPGA的数字示波器实现

    【数字示波器设计】——基于FPGA的数字示波器实现 数字示波器是电子技术领域中非常重要的仪器之一,可以用来观察电信号的波形,是电子工程师必备的工具。而基于FPGA的数字示波器则具有高速、高精度和可编程性强等优势,成为了现代电子工程师常用的示波器。 本文将介

    2024年01月20日
    浏览(45)
  • 示波器带宽

    示波器有很多不同规格,确定了可捕获和测量信号的准确度。但是示波器的主要规格是其带宽。 所有示波器都具有以较高频率展示的低通频率响应,如下图所示。大多数带宽规格为 1 GHz 以及更低的示波器通常具有高斯频率响应。示波器高斯频率响应近似于单极点低通滤波器

    2024年02月13日
    浏览(44)
  • STM32示波器设计

    目录 前言 1、硬件模块 2、示波器基础知识 2.1 当头一棒就是,波形的概念 2 .2 第二就是需要观察的波形参数 2.3 第三就是示波器参数 2.3.1 采样率 2.3.2 带宽 2.3.4 刷新率 3、ADC采集和DAC输出 3.1 ADC 采集实现 3.1.1 配置ADC采集为定时触发DMA采集模式 3.1.2 配置ADC关联的定时器 3.1.3 转

    2023年04月14日
    浏览(97)
  • 电脑连接示波器读取数据

    示波器型号:北京普源的RIGOL MSO4034 首先连接示波器: 连接线与示波器相连的端口如上图USB DEVICE所示,是一个比较奇怪的方形接口。连接线的另一端是标准的USB typeA接口,可以直接插在电脑上,当示波器和电脑连接时,电脑会提示安装驱动。 该型号示波器端口是业界通用的

    2023年04月08日
    浏览(54)
  • LabVIEW虚拟数字示波器

    1、简易版 1.1、生成虚拟数据 1.2、 数据参数信息 1.3、 调节时间和幅度 1.4、 调节直流偏置和增益 1.5、 数据信号频域分析 1.6、数据信号滤波 1.7、 保存波形数据 1.8、加载波形数据 1.9、停止运行 2、复杂版 2.1、调节数据信号频率、幅度、相位、偏移量和占空比 2.2、调节时

    2024年02月03日
    浏览(52)
  • 嵌入式开发----示波器入门

    对于嵌入式工程师来说,示波器的使用极为重要,他就像是“电子工程师的眼睛”,把被测信号的实际波形显示在屏幕上,以供工程师查找定位问题或评估系统性能等,利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用来测试电量,如电压、电流、频率、

    2024年01月18日
    浏览(55)
  • 基于FPGA的示波器设计

    目录 一、设计要求 二、系统架构设计         本次基于FPGA的示波器设计主要技术要求包含以下内容: 系统能够实现模数转换功能,即包含ADC驱动模块; 系统能够实现ADC采集数据的缓存功能; 系统包含辅助测试模块,DAC数模转换模块; 系统能够实现ADC数据和LCD液晶显示数

    2024年02月14日
    浏览(41)
  • 示波器的 带宽、采样率、存储深度

    带宽:示波器上标注的带宽是可测量信号的最大带宽 数字示波器带宽一般都是指其前段放大器的模拟带宽。这里的放大器相当于一个低通滤波器。 示波器的带宽决定了其能测量多大的带宽,也决定了示波器的价格。 如果需要测试100M信号,需要多大带宽的示波器呢? 五倍法

    2024年02月06日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包