基于单片机设计的防煤气泄漏装置

这篇具有很好参考价值的文章主要介绍了基于单片机设计的防煤气泄漏装置。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、前言

煤气泄漏是一个严重的安全隐患,可能导致火灾、爆炸以及对人体健康的威胁。为了提高家庭和工业环境中煤气泄漏的检测和预防能力,设计了一种基于单片机的防煤气泄漏装置。

单片机选择STC89C52作为主控芯片。为了检测煤气泄漏,采用了MQ4传感器,能够快速、准确地检测煤气浓度。通过采集MQ4传感器的模拟信号,使用PCF8591模数转换芯片将模拟信号转换为数字信号。采用IIC接口的OLED显示屏,将采集到的数据显示出来,方便用户获取检测结果。用户可以通过两个独立按键设置煤气泄漏的报警阈值,以适应不同环境的需求。

当检测到煤气泄漏超过设定的阈值时,装置会触发蜂鸣器进行报警,并同时打开换气扇进行通风换气,以迅速排除煤气并降低安全风险。

这种基于单片机设计的防煤气泄漏装置具有以下优点:高效可靠的煤气泄漏检测能力、灵活的报警阈值设置、直观清晰的数据显示以及及时的安全响应措施。可以广泛应用于家庭、工业和商业场所,提供有效的煤气泄漏监测和安全保护。

基于单片机设计的防煤气泄漏装置,STM32单片机开发基础,单片机,嵌入式硬件

基于单片机设计的防煤气泄漏装置,STM32单片机开发基础,单片机,嵌入式硬件

二、硬件选型

在设计基于单片机的防煤气泄漏装置时,硬件选型是非常关键的。以下是详细介绍硬件选型的相关内容:

【1】主控芯片选择:STC89C52 STC89C52是一款8051架构的单片机,具有丰富的接口资源、较高的性能和稳定可靠的工作特性,广泛应用于各种嵌入式系统中。具有8位数据总线、16位地址总线和4KB的内部存储器。STC89C52具备多个通用I/O口、定时器/计数器、串口等功能,非常适合本项目需求。

【2】煤气传感器选择:MQ4 MQ4传感器是一种能够检测多种可燃气体,如天然气、甲烷等的传感器。具有高灵敏度和快速响应的特点,能够准确地检测煤气泄漏情况。MQ4传感器的输出为模拟信号,需要通过模数转换器将其转换为数字信号供主控芯片处理。

【3】模数转换器选择:PCF8591 PCF8591是一款集成了8位模数/数模转换和4个模拟输入通道的模数转换器。采用IIC总线通讯接口,能够将模拟信号转换为数字信号,并通过IIC协议发送给主控芯片。本项目中,PCF8591用于采集MQ4传感器输出的模拟信号,并将其转换为数字信号供STC89C52处理。

【4】显示屏选择:0.96寸OLED显示屏(IIC接口) 本设计采用基于IIC接口的OLED显示屏,具有高亮度、对比度和快速响应的特点。通过简单的通讯方式,可以将煤气浓度信息实时显示在屏幕上。OLED显示屏使用面积小、功耗低,在嵌入式系统中应用广泛。

【5】按键选择:独立按键 本设计采用两个独立按键来设置报警的阀值。一个按键用于递增阀值,另一个按键用于递减阀值。独立按键具有简单可靠、使用方便等特点,适合本项目需求。

【6】报警装置选择:蜂鸣器和换气扇 当检测到煤气泄漏超过设定的报警阀值时,蜂鸣器将发出警报,用于提醒周围人员。同时,为了降低煤气浓度,需要启动换气扇进行通风换气。具体的报警和换气扇电路可以根据实际需求设计。

三、设计思路

软件设计思路如下:

【1】初始化:在程序开始时,进行主控芯片STC89C52的初始化设置,包括引脚配置、定时器设置等。同时,初始化PCF8591和OLED显示屏,确保它们可以正常工作。

【2】传感器检测:通过MQ4传感器检测煤气是否泄漏。将MQ4传感器与STC89C52的模拟输入引脚连接,通过读取该引脚的模拟电压值,获取煤气浓度数据。

【3】数据采集与处理:使用PCF8591模数转换芯片,将MQ4传感器的模拟输出信号转换为数字信号,并通过STC89C52的IIC接口与PCF8591进行通信,获取转换后的数字数据。

【4】数据显示:将采集到的煤气浓度数据通过IIC接口的OLED显示屏进行显示。使用STC89C52的IIC通信功能,将数据发送给OLED显示屏,通过显示屏将数据以可读的方式展示给用户。

【5】阈值设置:通过两个独立按键实现报警阈值的设置。将按键与STC89C52的GPIO引脚连接,通过读取按键状态来判断用户是否进行阈值设置操作。当按键按下时,进入设置模式,用户可以通过按键的不同组合来调整报警阈值,并将设置的值保存在相应的变量中。

【6】报警与通风控制:根据当前采集到的煤气浓度数据和用户设置的报警阈值进行比较。如果煤气浓度超过设定的阈值,触发蜂鸣器进行报警,并控制换气扇打开进行通风换气。反之,当煤气浓度低于或等于设定的阈值时,停止报警并关闭换气扇。

【7】循环监测:使用主循环结构,不断进行煤气泄漏检测、数据采集、数据显示和阈值比较等操作,以实现持续的监测和反馈。

四、项目模块代码

4.1 PCF8591采集代码

下面是使用STC89C52单片机通过PCF8591读取MQ4传感器的ADC数据的代码。使用IIC总线进行PCF8591之间的通信,使用了自定义的IIC总线函数。通过readADC()函数实现了读取MQ4传感器模拟量的ADC转换结果。

#include <reg52.h>

#define uchar unsigned char
#define uint unsigned int

sbit SDA = P2^0;    // IIC总线数据线
sbit SCL = P2^1;    // IIC总线时钟线

sbit MQ4_DOUT = P3^0;   // MQ4传感器数字输出引脚
sbit MQ4_AIN = P3^1;    // MQ4传感器模拟输入引脚

sfr IAP_DATA = 0xe2;    // 定义IAP_DATA寄存器
sfr IAP_ADDRH = 0xe3;   // 定义IAP_ADDRH寄存器
sfr IAP_ADDRL = 0xe4;   // 定义IAP_ADDRL寄存器
sfr IAP_CMD = 0xe5;     // 定义IAP_CMD寄存器
sfr IAP_TRIG = 0xe6;    // 定义IAP_TRIG寄存器
sfr IAP_CONTR = 0xe7;   // 定义IAP_CONTR寄存器

// 函数声明
void delay(uint ms);
void startIIC();
void stopIIC();
void sendByte(uchar dat);
uchar receiveByte();
void writeDAC(uchar dat);
uchar readADC();

void main() {
    uchar mq4Value;
    
    while (1) {
        mq4Value = readADC();  // 读取ADC转换结果
        
        // 处理mq4Value值,进行相应操作
        
        delay(100);  // 延时一段时间
    }
}

// 延时函数
void delay(uint ms) {
    uint i, j;
    for(i = ms; i > 0; i--) {
        for(j = 110; j > 0; j--);
    }
}

// IIC总线起始信号
void startIIC() {
    SDA = 1;
    _nop_();
    SCL = 1;
    _nop_();
    SDA = 0;
    _nop_();
    SCL = 0;
    _nop_();
}

// IIC总线停止信号
void stopIIC() {
    SDA = 0;
    _nop_();
    SCL = 1;
    _nop_();
    SDA = 1;
    _nop_();
}

// 发送一个字节的数据
void sendByte(uchar dat) {
    uchar i;
    for (i = 0; i < 8; i++) {
        SDA = dat >> 7;
        _nop_();
        SCL = 1;
        _nop_();
        SCL = 0;
        _nop_();
        dat <<= 1;
    }
    SDA = 1;
    _nop_();
    SCL = 1;
    _nop_();
    SCL = 0;
    _nop_();
}

// 接收一个字节的数据
uchar receiveByte() {
    uchar i, dat = 0;
    SDA = 1;
    for (i = 0; i < 8; i++) {
        dat <<= 1;
        SCL = 1;
        _nop_();
        dat |= SDA;
        SCL = 0;
        _nop_();
    }
    return dat;
}

// 写入DAC数值
void writeDAC(uchar dat) {
    startIIC();
    sendByte(0x90);  // 地址和写命令
    receiveByte();   // 接收应答
    sendByte(0x40);  // DAC通道A,并写入数据
    receiveByte();   // 接收应答
    sendByte(dat);   // DAC数据
    receiveByte();   // 接收应答
    stopIIC();
}

// 读取ADC转换结果
uchar readADC() {
    uchar adcValue;
    
    startIIC();
    sendByte(0x91);   // 地址和读命令
    receiveByte();    // 接收应答
    adcValue = receiveByte();  // 读取ADC数据
    stopIIC();
    
    return adcValue;
}

4.2 OLED显示屏代码

以下是通过STC89C52控制IIC接口的OLED显示屏显示ADC数据实现代码。文章来源地址https://www.toymoban.com/news/detail-730171.html

#include <reg51.h>

#define SCL P1_0   // IIC时钟线
#define SDA P1_1   // IIC数据线

#define OLED_ADDR 0x78   // OLED显示屏的IIC地址

// OLED显示屏初始化函数
void OLED_Init() {
    // 初始化OLED显示屏
    // ...

    // 发送初始化命令到OLED显示屏
    // ...
}

// IIC总线开始信号
void IIC_Start() {
    SDA = 1;
    SCL = 1;
    SDA = 0;
    SCL = 0;
}

// IIC总线停止信号
void IIC_Stop() {
    SDA = 0;
    SCL = 1;
    SDA = 1;
}

// IIC总线发送一个字节的数据
void IIC_WriteByte(unsigned char dat) {
    unsigned char i;
    for (i = 0; i < 8; i++) {
        SCL = 0;
        if (dat & 0x80)
            SDA = 1;
        else
            SDA = 0;
        SCL = 1;
        dat <<= 1;
    }
    SCL = 0;
    SDA = 1;
    SCL = 1;
}

// 设置OLED显示屏光标位置
void OLED_SetPos(unsigned char x, unsigned char y) {
    IIC_Start();
    IIC_WriteByte(OLED_ADDR);
    IIC_WriteByte(0xb0 + y);
    IIC_WriteByte(((x & 0xf0) >> 4) | 0x10);
    IIC_WriteByte((x & 0x0f) | 0x01);
    IIC_Stop();
}

// 在OLED显示屏上显示一个字符
void OLED_ShowChar(unsigned char x, unsigned char y, unsigned char ch) {
    unsigned char c = 0, i = 0;
    c = ch - ' ';   // 获取字符在字库中的偏移量
    if (x > 128 - 8 || y > 64 - 16)
        return;   // 超出屏幕范围,退出函数
    OLED_SetPos(x, y);
    for (i = 0; i < 8; i++) {
        IIC_Start();
        IIC_WriteByte(OLED_ADDR);
        IIC_WriteByte(0x40);
        IIC_WriteByte(*(OLED_CharSet + c * 16 + i));
        IIC_Stop();
        x++;
    }
}

// 在OLED显示屏上显示字符串
void OLED_ShowString(unsigned char x, unsigned char y, unsigned char *str) {
    while (*str) {
        OLED_ShowChar(x, y, *str);
        x += 8;
        str++;
    }
}

// ADC模拟数值转换为字符串
void ADC_ToString(unsigned int adcValue, unsigned char *str) {
    unsigned char i, j;
    unsigned int temp;

    temp = adcValue;
    for (i = 0; i < 4; i++) {
        str[i] = temp % 10 + '0';
        temp /= 10;
    }

    // 反转字符串
    i = 0;
    j = 3;
    while (i < j) {
        temp = str[i];
        str[i] = str[j];
        str[j] = temp;
        i++;
        j--;
    }
    str[4] = '\0';   // 字符串结束符
}

// 主函数
void main() {
    unsigned int adcValue = 0;
    unsigned char str[5];

    // 初始化OLED显示屏
    OLED_Init();

    while (1) {
        // 读取ADC数据
        adcValue = ADC_Read();   // 假设使用的函数为ADC_Read(),用于读取ADC数据

        // 将ADC数据转换为字符串
        ADC_ToString(adcValue, str);

        // 在OLED显示屏上显示ADC数据
        OLED_ShowString(0, 0, "ADC Value:");
        OLED_ShowString(0, 2, str);
    }
}

4.3 主代码逻辑

#include <reg51.h>

#define SCL P1_0    // IIC时钟线
#define SDA P1_1    // IIC数据线

#define OLED_ADDR 0x78    // OLED显示屏的IIC地址
#define MQ4_PIN P2      // MQ4传感器连接的引脚

sbit Buzzer = P3^0;    // 蜂鸣器控制引脚
sbit VentilationFan = P3^1;    // 换气扇控制引脚

// 全局变量
unsigned int alarmThreshold = 100;    // 报警阈值,默认为100
unsigned int adcValue = 0;    // 保存ADC采集到的数值

// IIC总线开始信号
void IIC_Start() {
    SDA = 1;
    SCL = 1;
    SDA = 0;
    SCL = 0;
}

// IIC总线停止信号
void IIC_Stop() {
    SDA = 0;
    SCL = 1;
    SDA = 1;
}

// IIC总线发送一个字节的数据
void IIC_WriteByte(unsigned char dat) {
    unsigned char i;
    for (i = 0; i < 8; i++) {
        SCL = 0;
        if (dat & 0x80)
            SDA = 1;
        else
            SDA = 0;
        SCL = 1;
        dat <<= 1;
    }
    SCL = 0;
    SDA = 1;
    SCL = 1;
}

// 设置OLED显示屏光标位置
void OLED_SetPos(unsigned char x, unsigned char y) {
    IIC_Start();
    IIC_WriteByte(OLED_ADDR);
    IIC_WriteByte(0xb0 + y);
    IIC_WriteByte(((x & 0xf0) >> 4) | 0x10);
    IIC_WriteByte((x & 0x0f) | 0x01);
    IIC_Stop();
}

// 在OLED显示屏上显示一个字符
void OLED_ShowChar(unsigned char x, unsigned char y, unsigned char ch) {
    unsigned char c = 0, i = 0;
    c = ch - ' ';    // 获取字符在字库中的偏移量
    if (x > 128 - 8 || y > 64 - 16)
        return;    // 超出屏幕范围,退出函数
    OLED_SetPos(x, y);
    for (i = 0; i < 8; i++) {
        IIC_Start();
        IIC_WriteByte(OLED_ADDR);
        IIC_WriteByte(0x40);
        IIC_WriteByte(*(OLED_CharSet + c * 16 + i));
        IIC_Stop();
        x++;
    }
}

// 在OLED显示屏上显示字符串
void OLED_ShowString(unsigned char x, unsigned char y, unsigned char *str) {
    while (*str) {
        OLED_ShowChar(x, y, *str);
        x += 8;
        str++;
    }
}

// ADC转换函数
unsigned int ADC_Convert(unsigned char channel) {
    ADC_CONTR = ADC_POWER | ADC_START | channel | ADC_SPEED;
    _nop_();
    _nop_();
    _nop_();
    _nop_();
    while (!(ADC_CONTR & ADC_FLAG))
        ;
    ADC_CONTR &= ~ADC_FLAG;
    return (ADC_RES * 256 + ADC_RESL);
}

// ADC模拟数值转换为字符串
void ADC_ToString(unsigned int adcValue, unsigned char *str) {
    unsigned char i, j;
    unsigned int temp;

    temp = adcValue;
    for (i = 0; i < 4; i++) {
        str[i] = temp % 10 + '0';
        temp /= 10;
    }

    // 反转字符串
    i = 0;
    j = 3;
    while (i < j) {
        temp = str[i];
        str[i] = str[j];
        str[j] = temp;
        i++;
        j--;
    }
    str[4] = '\0';    // 字符串结束符
}

 主函数
void main() {
    unsigned char str[5];

    // 初始化OLED显示屏
    OLED_Init();

    // 设置初始报警阈值
    SetAlarmThreshold();

    while (1) {
        // 读取MQ4传感器的ADC数值
        adcValue = ADC_Convert(0);    // 假设MQ4传感器连接到ADC的通道0

        // 将ADC数值转换为字符串
        ADC_ToString(adcValue, str);

        // 在OLED显示屏上显示ADC数值
        OLED_ShowString(0, 0, "Gas Level:");
        OLED_ShowString(0, 2, str);

        // 判断是否触发报警
        if (adcValue > alarmThreshold) {
            // 触发报警
            ActivateAlarm();
        } else {
            // 取消报警
            DeactivateAlarm();
        }

        // 检测是否按下设置阈值的按键
        if (IsThresholdButtonPressed()) {
            // 设置报警阈值
            SetAlarmThreshold();
        }

        // 检测是否按下通风换气的按键
        if (IsVentilationButtonPressed()) {
            // 控制通风换气
            ControlVentilation();
        }
    }
}

到了这里,关于基于单片机设计的防煤气泄漏装置的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于单片机的天然气泄漏报警系统设计

      此设计主要利用了MQ-5传感器采集气体的浓度信号,由系统设置浓度和电压之间的关系,令浓度与电压发生转换、能够显示出当下天然气浓度与声光提示报警构成的报警装置。该检测系统能够检测出当下天然气的浓度,检测出的天然气浓度不超过设定报警设定值的时候,数

    2024年01月23日
    浏览(45)
  • 基于单片机的天然气泄漏报警系统设计论文

    摘 要 I Abstract II 1 引 言 1 2天然气泄露检测报警系统的方案设计 4 2.1 方案选择 4 2.2 天然气泄露报警系统的整体设计方案 5 2.2.1天然气泄漏报警器工作原理 5 2.2.2天然气泄漏报警器的结构 5 3天然气泄露报警的硬件部分设计 7 3.1 STC89C52单片机 7 3.2 传感器的选择 10 3.3 LCD1602液晶显示

    2024年03月20日
    浏览(49)
  • 【毕业设计】21-基于单片机的智能恒温箱/温度报警装置设计(原理图+仿真+源代码+答辩论文+答辩PPT)

    资料包含:毕业设计全套资料(精品) 原理图工程文件 原理图截图 仿真模型工程文件 仿真截图 答辩论文低重复率文档,20962字 英文文献及翻译 答辩PPT 恒温控制在工业生产过程中举足轻重,温度的控制直接影响着工业生产的质量。本文设计了基于单片机的智能恒温箱,要求

    2024年02月02日
    浏览(45)
  • 【毕业设计】62-基于单片机的防酒驾\酒精浓度检测系统设计研究(原理图、源代码、仿真工程、答辩论文、答辩PPT)

    包含此题目毕业设计全套资料:全套毕业设计源资料(精品) 原理图工程文件 原理图截图 仿真模型工程文件 仿真截图 仿真视频 答辩论文,低重复率文档,24517字 英文文献及翻译 开题报告 任务书 答辩PPT 主要研究内容: 司机饮酒驾车已成为交通事故高发的原因之一,为预

    2024年02月03日
    浏览(53)
  • 【毕业设计】6-基于51单片机的电子称重装置/电子测温/压力测试控制系统设计(原理图+源码+仿真工程+论文+PPT)

    包含此题目毕业设计全套资料: 原理图工程文件 工程源代码工程文件 仿真工程文件 论文(低重复率), 21533字 原理图截图 仿真截图 主要研究内容: 设计一个基于51单片机的电子称重装置,该装置主要由51单片机、传感器、A/D转换器、电源、键盘、LCD、LED显示器等实验器材

    2024年02月03日
    浏览(68)
  • PIC单片机项目(2)——基于PIC16F877A的温度测量与存储装置

            首先,简要描述一下所实现的功能。系统采用DS18B20传感器测量实时温度,将测量的温度显示在LCD1602显示器上。此外,还用了IIC协议的EEPROM模块24LC256存储温度的历史值,存储深度为10000.也就是从系统开始运行,就实时将测量值存入EEPROM里面,直到存满10000个值,新值

    2024年02月03日
    浏览(38)
  • 51单片机课程设计——基于单片机的AD模数转换设计

    一、功能简介 1.A/D 是模拟量到数字量的转换,依靠的是模数转换器(AnalogtoDigitalConverter),简称ADC。D/A是数字量到模拟量的转换,依靠的是数模转换器(DigitaltoAnalogConverter),简称DAC。它们的道理是完全一样的,只是转换方向不同,因此我们讲解过程主要以A/D为例来讲解。

    2024年02月04日
    浏览(50)
  • 单片机设计基于单片机的交通灯控制系统的设计

      针对我国城市路况复杂的特点,在交通灯控制系统硬件设计方面以最小系统模块、电源模块、时间显示模块以及车流量检测模块为主要模块,不仅可以完成交通灯的顺序点亮,还可以实现倒计时、车流量检测等相关功能;软件设计方面通过检测程序的设定,来检测是否达

    2024年02月04日
    浏览(44)
  • 单片机设计基于51单片机的智能风扇控制系统设计与实现

      我们常见的电风扇一般只有四、五个风速档,用的是人工开关,而且并不是每个人家里都会有空调,或者在一些小型的工厂或者一些小型加工厂,这些地方都可能没有配备大型的中央空调系统这些东西,所以这些东西往往都会采用风扇这种小成本的东西来代替,但是不清楚

    2024年02月03日
    浏览(65)
  • 单片机开发|基于单片机的婴儿睡眠监测系统设计

    作者简介:全栈开发工程,从事Java、Python、前端、小程序方面的开发和研究,对大数据应用与开发比较感兴趣, 主要内容:Java项目、前端项目、Python项目、小程序开发、大数据项目、单片机 收藏点赞不迷路  关注作者有好处 文末获取源码   感谢您的关注,请收藏以免忘记

    2024年02月10日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包