460. LFU 缓存

这篇具有很好参考价值的文章主要介绍了460. LFU 缓存。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。

实现 LFUCache 类:

  • LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
  • int get(int key) - 如果键 key 存在于缓存中,则获取键的值,否则返回 -1 。
  • void put(int key, int value) - 如果键 key 已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量 capacity 时,则应该在插入新项之前,移除最不经常使用的项。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最久未使用 的键。

为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。

当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 get 或 put 操作,使用计数器的值将会递增。

函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:

输入:
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]

解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1);   // cache=[1,_], cnt(1)=1
lfu.put(2, 2);   // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1);      // 返回 1
                 // cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3);   // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
                 // cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2);      // 返回 -1(未找到)
lfu.get(3);      // 返回 3
                 // cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4);   // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
                 // cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1);      // 返回 -1(未找到)
lfu.get(3);      // 返回 3
                 // cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4);      // 返回 4
                 // cache=[3,4], cnt(4)=2, cnt(3)=3

提示:

  • 1 <= capacity <= 104
  • 0 <= key <= 105
  • 0 <= value <= 109
  • 最多调用 2 * 105 次 get 和 put 方法


其中 cnt 表示缓存使用的频率,time 表示缓存的使用时间,key 和 value 表示缓存的键值。

题解:比较直观的想法就是我们用哈希表 key_table 以键 key 为索引存储缓存,建立一个平衡二叉树 S 来保持缓存根据 (cnt,time) 双关键字。还有一道类似的题LRU:146. LRU 缓存机制-CSDN博客

code:文章来源地址https://www.toymoban.com/news/detail-730513.html

class LFUCache {
    // 缓存容量,时间戳
    int capacity, time;
    Map<Integer, Node> key_table;
    TreeSet<Node> S;

    public LFUCache(int capacity) {
        this.capacity = capacity;
        this.time = 0;
        key_table = new HashMap<Integer, Node>();
        S = new TreeSet<Node>();
    }
    
    public int get(int key) {
        if (capacity == 0) {
            return -1;
        }
        // 如果哈希表中没有键 key,返回 -1
        if (!key_table.containsKey(key)) {
            return -1;
        }
        // 从哈希表中得到旧的缓存
        Node cache = key_table.get(key);
        // 从平衡二叉树中删除旧的缓存
        S.remove(cache);
        // 将旧缓存更新
        cache.cnt += 1;
        cache.time = ++time;
        // 将新缓存重新放入哈希表和平衡二叉树中
        S.add(cache);
        key_table.put(key, cache);
        return cache.value;
    }
    
    public void put(int key, int value) {
        if (capacity == 0) {
            return;
        }
        if (!key_table.containsKey(key)) {
            // 如果到达缓存容量上限
            if (key_table.size() == capacity) {
                // 从哈希表和平衡二叉树中删除最近最少使用的缓存
                key_table.remove(S.first().key);
                S.remove(S.first());
            }
            // 创建新的缓存
            Node cache = new Node(1, ++time, key, value);
            // 将新缓存放入哈希表和平衡二叉树中
            key_table.put(key, cache);
            S.add(cache);
        } else {
            // 这里和 get() 函数类似
            Node cache = key_table.get(key);
            S.remove(cache);
            cache.cnt += 1;
            cache.time = ++time;
            cache.value = value;
            S.add(cache);
            key_table.put(key, cache);
        }
    }
}

class Node implements Comparable<Node> {
    int cnt, time, key, value;

    Node(int cnt, int time, int key, int value) {
        this.cnt = cnt;
        this.time = time;
        this.key = key;
        this.value = value;
    }

    public boolean equals(Object anObject) {
        if (this == anObject) {
            return true;
        }
        if (anObject instanceof Node) {
            Node rhs = (Node) anObject;
            return this.cnt == rhs.cnt && this.time == rhs.time;
        }
        return false;
    }

    public int compareTo(Node rhs) {
        return cnt == rhs.cnt ? time - rhs.time : cnt - rhs.cnt;
    }

    public int hashCode() {
        return cnt * 1000000007 + time;
    }
}

到了这里,关于460. LFU 缓存的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • leetcode 146. LRU 缓存

             本题核心就是要将map中,最近最少操作的那个key给剔除掉,于是我们可以使用双端链表LinkedList 来维护每个元素的操作情况,最近操作的元素就将其移至表头,越久没操作的元素,自然就会沉到表尾。  一旦缓存满了,将表尾元素剔除即可。  java代码如下:

    2024年02月08日
    浏览(42)
  • LeetCode刷题---LRU缓存

    LRU是Least Recently Used的缩写,即最近最少使用,是一种内存管理算法,也可以用作缓存淘汰策略。 这种算法的核心思想是:如果数据最近被访问过,那么将来被访问的几率也更高。 因此,当内存或缓存容量有限,需要淘汰部分数据时,LRU算法会优先淘汰那些最长时间未被访问

    2024年02月22日
    浏览(37)
  • 【LeetCode】146.LRU缓存

    请你设计并实现一个满足  LRU (最近最少使用) 缓存 约束的数据结构。 实现  LRUCache  类: LRUCache(int capacity)  以  正整数  作为容量  capacity  初始化 LRU 缓存 int get(int key)  如果  key  存在于缓存中,则返回的值,否则返回  -1  。 void put(int key, int value)  如果

    2024年02月09日
    浏览(41)
  • Redis 的 LRU 与 LFU 算法实现

    原文地址 Redis是一款基于内存的 高性能NoSQL 数据库,数据都缓存在内存里, 这使得Redis可以每秒轻松地处理数万的读写请求。 相对于磁盘的容量,内存的空间一般都是有限的,为了避免Redis耗尽宿主机的内存空间,Redis内部实现了一套复杂的缓存淘汰策略来管控内存使用量。

    2024年02月13日
    浏览(31)
  • 【LeetCode-中等题】146. LRU 缓存

    LRU缓存是什么:LRU缓存机制,你想知道的这里都有 实现 LRU 缓存算法 map —key存 integer value存链表节点 ListNode 存 next 和prev 引用 以及 存 key 和value 具体值 图解:官方图解 步骤: 定义一个自定义的双向链表节点类 DLinkedNode,该类包含 key 和 value 字段,并且具有 prev 和 next 指针

    2024年02月10日
    浏览(48)
  • 【LeetCode刷题-链表】--146.LRU缓存

    方法一:哈希表+双向链表 使用一个哈希表和一个双向链表维护所有在缓存中的键值对 双向链表按照被使用的顺序存储了这些键值对,靠近头部的键值对是最近使用的,而靠近尾部的键值对是最久使用的 哈希表即为普通的哈希映射,通过缓存数据的键映射到其在双向链表中的

    2024年02月05日
    浏览(44)
  • 【数据结构】LRU缓存的简单模拟实现(leetcode力扣146LRU缓存)

    LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。 Cache的容量有限,因此当Cache的容量用完后,而又有新的内容需要添加进来时, 就需要挑选并舍弃原有的部分内容,从而腾出空间来放新内容。LRU Cache 的替换原则就是将最近最少使用的内容替换掉。

    2024年02月03日
    浏览(42)
  • leetcode做题笔记146. LRU 缓存

    请你设计并实现一个满足  LRU (最近最少使用) 缓存 约束的数据结构。 实现  LRUCache  类: LRUCache(int capacity)  以  正整数  作为容量  capacity  初始化 LRU 缓存 int get(int key)  如果  key  存在于缓存中,则返回的值,否则返回  -1  。 void put(int key, int value)  如果

    2024年02月07日
    浏览(36)
  • 页面置换算法(OPT、FIFO、LRU、时钟、LFU)

    在地址映射过程中,若在页面中发现所要访问的页面不在内存中,则产生缺页中断。当发生缺页中断时,如果操作系统内存中没有空闲页面,则操作系统必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。而用来选择淘汰哪一页的规则叫做页面置换算法

    2024年02月06日
    浏览(27)
  • 论文笔记|Not All Tasks Are Equally Difficult MultiTask Reinforcement Learning with Dynamic Depth Routing

    AAAI24 多任务强化学习致力于用单一策略完成一组不同的任务。为了通过跨多个任务共享参数来提高数据效率,常见的做法是将网络分割成不同的模块,并训练路由网络将这些模块重新组合成特定于任务的策略。然而,现有的路由方法对所有任务采用固定数量的模块,忽略了具

    2024年01月19日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包