【机器学习】项目数据处理部分

这篇具有很好参考价值的文章主要介绍了【机器学习】项目数据处理部分。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

本文参考《阿里云天池大赛赛题解析》,拿到一个项目或者赛题,使用机器学习来进行预测分类,需要以下七个步骤:

  1. 项目(赛题)理解
  2. 数据探索
  3. 特征工程
  4. 模型训练
  5. 模型验证
  6. 特征优化
  7. 模型融合

本本是数据处理,即前3个步骤:项目理解、数据探索,特征工程。


项目理解

简单的了解一下,并不太重要的一个步骤。

  1. 知道项目是干什么的,了解一下项目业务。
  2. 是什么类型的模型,是分类还是回归?可以提前罗列出一些可以用于该模型的机器学习的算法。

数据探索

  1. 需要导入的库:基础库和画图工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from scipy import stats

import warnings
warnings.filterwarnings("ignore")
  1. 读取数据文件
train_data_file = "./zhengqi_train.txt"
test_data_file =  "./zhengqi_test.txt"

train_data = pd.read_csv(train_data_file, sep='\t', encoding='utf-8')
test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')

sep是分隔符,根据文件数据用pandas读取。

  1. 查看数据基本信息的方法:
    1)head():查看前五行数据。
    2)info():整体数据的基本信息,包括每一列有多少数据,是什么数据类型等。
    3)describe():查看数据的统计信息。
    4)value_counts():查看标签有几类,每一类有多少数据
    5)groupby('索引名').size() :查看该索引有几类,每一类有多少数据

到这里你需要知道:
1)特征与标签在数据中的位置。
2)特征中有那些是 数字型数据和字符型数据,以及那些是连续型变量和类别型变量。

  1. 可视化数据分布【单变量】
    1)【箱型图】连续型变量:用来识别异常值,在上限与下线之外的点是异常值

【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘

单个变量的箱型图:

fig = plt.figure(figsize=(4, 6))  # 指定绘图对象宽度和高度
sns.boxplot(数据集['索引名'],orient="v", width=0.5)

【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘
画全部变量的箱体图:

# 画箱式图
column = train_data.columns.tolist()[1:]  # 列表头 数据集
fig = plt.figure(figsize=(20, 40))  # 指定绘图对象宽度和高度
for i in range(多少个图):
    plt.subplot(10, 3, i + 1)  # 10行3列 可画30子图
    sns.boxplot(x = train_data[column[i]], orient="v", width=0.5)  # 箱式图
    plt.ylabel(column[i], fontsize=8)
plt.show()

【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘可以看到有异常值,这个异常值只是对影响的特殊数据点的进行检查,它的选择取决于对业务的理解。

2)【柱状图】分类型数据可以通过柱状图来表示:

g = sns.FacetGrid(train_data, col='Diabetes_binary')
g = g.map(sns.histplot, "Sex")
plt.show()

【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘

3)【直方图和Q-Q图】
QQ图是指数据的分位数对比参照的图,如果数据符合正态分布,则所有的点都会落在直线上。

plt.figure(figsize=(10,5))

ax=plt.subplot(1,2,1)
sns.distplot(train_data['BMI'],fit=stats.norm)
ax=plt.subplot(1,2,2)
res = stats.probplot(train_data['BMI'], plot=plt)

【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘画出所有特征的直方图QQ图,看是否近似正态分布:

train_cols = 6
train_rows = len(train_data.columns)
plt.figure(figsize=(4*train_cols,4*train_rows))

i=0
for col in train_data.columns:
    i+=1
    ax=plt.subplot(train_rows,train_cols,i)
    sns.distplot(train_data[col],fit=stats.norm)
    
    i+=1
    ax=plt.subplot(train_rows,train_cols,i)
    res = stats.probplot(train_data[col], plot=plt)
plt.show()

4)【KDE分布图】
训练集数据和测试集数据的分布情况,查看数据分布是否一致

dist_cols = 6
dist_rows = len(test_data.iloc[:,1:].columns)

plt.figure(figsize=(4*dist_cols,4*dist_rows))

i=1
for col in test_data.iloc[:,1:].columns:
    ax=plt.subplot(dist_rows,dist_cols,i)
    ax = sns.kdeplot(train_data[col], color="Red", shade=True)
    ax = sns.kdeplot(test_data[col], color="Blue", shade=True)
    ax.set_xlabel(col)
    ax.set_ylabel("Frequency")
    ax = ax.legend(["train","test"])

    i+=1
plt.show()

【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘有一些特征数据不太一致,就得去掉,很有可能是噪声,影响预测结果。

5)【线性回归关系图】
主要用于分析变量之间的线性回归关系:
单个特征与标签的线性关系:

fcols = 2
frows = 1

plt.figure(figsize=(8,4))

ax=plt.subplot(1,2,1)
sns.regplot(x='V0', y='target', data=train_data, ax=ax, 
            scatter_kws={'marker':'.','s':3,'alpha':0.3},
            line_kws={'color':'k'});
plt.xlabel('V0')
plt.ylabel('target')

ax=plt.subplot(1,2,2)
sns.distplot(train_data['V0'].dropna())
plt.xlabel('V0')

plt.show()

【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘
通过下图看是否有相关性:
【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘
所有特征与标签的线性关系:

fcols = 6
frows = len(test_data.columns)
plt.figure(figsize=(5*fcols,4*frows))

i=0
for col in test_data.columns:
    i+=1
    ax=plt.subplot(frows,fcols,i)
    sns.regplot(x=col, y='target', data=train_data, ax=ax, 
                scatter_kws={'marker':'.','s':3,'alpha':0.3},
                line_kws={'color':'k'});
    plt.xlabel(col)
    plt.ylabel('target')
    
    i+=1
    ax=plt.subplot(frows,fcols,i)
    sns.distplot(train_data[col].dropna())
    plt.xlabel(col)

6)【多变量图】可以支持各种类型的变量分析,是特征分析很好用的工具

sns.pairplot(train_data.iloc[:,1], hue = 'Diabetes_binary')
  1. 可视化数据分布【双变量】
    特征变量和目标变量及特征变量之间的关系:
    热力图:
train_corr = train_data.iloc[:,1:].corr()
# 画出相关性热力图
ax = plt.subplots(figsize=(20, 16))#调整画布大小
ax = sns.heatmap(train_corr, vmax=.8, square=True, annot=True)#画热力图   annot=True 显示系数

【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘
寻找K个与标签最相关的特征:

#寻找K个最相关的特征信息
k = 10 # number of variables for heatmap
cols = train_corr.nlargest(k, 'Diabetes_binary')['Diabetes_binary'].index

cm = np.corrcoef(train_data[cols].values.T)
hm = plt.subplots(figsize=(10, 10))#调整画布大小
#hm = sns.heatmap(cm, cbar=True, annot=True, square=True)
#g = sns.heatmap(train_data[cols].corr(),annot=True,square=True,cmap="RdYlGn")
hm = sns.heatmap(train_data[cols].corr(),annot=True,square=True)

plt.show()

【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘
寻找相关系数大于某个值的特征:

threshold = 0.1

corrmat = train_data.iloc[:,1:].corr()
top_corr_features = corrmat.index[abs(corrmat["Diabetes_binary"])>threshold]
plt.figure(figsize=(10,10))
g = sns.heatmap(train_data[top_corr_features].corr(),annot=True,cmap="RdYlGn")

【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘

可以直接用相关系数阈值来移除某些特征

# Threshold for removing correlated variables
threshold = 0.5

# Absolute value correlation matrix
corr_matrix = data_train1.corr().abs()
drop_col=corr_matrix[corr_matrix["target"]<threshold].index
data_all.drop(drop_col, axis=1, inplace=True)
  1. Box-Cox变换

线性回归基于正态分布,需要将数据转换使其符合正态分布。

# 1. 将训练集和测试集的特征变量合并 一起处理
train_x =  train_data.drop(['Diabetes_binary'], axis=1) # 训练集删除标签

#data_all=pd.concat([train_data,test_data],axis=0,ignore_index=True)
data_all = pd.concat([train_x,test_data]) # 合并训练集和测试集

#View data
data_all.head()

# 2. 归一化操作
# normalise numeric columns
cols_numeric=list(data_all.columns)

def scale_minmax(col):
    return (col-col.min())/(col.max()-col.min())

data_all[cols_numeric] = data_all[cols_numeric].apply(scale_minmax,axis=0)
data_all[cols_numeric].describe().T # 查看

特征工程

特征工程就是从原始数据提取特征的过程,这些特征可以很好的描述数据,并且利用特征建立的模型在未知数据上的性能表现可以达到最优。包括:特征使用、特征获取、特征处理、特征选择和特征监控。

处理流程:

  1. 去掉无用特征
  2. 去除冗余特征
  3. 对特征进行转换(数值化、归一化、类型转换)
  4. 对特征进行处理(异常值、最大值、最小值、缺失值)
  5. 符合模型的使用

总体可以分为:数据预处理、特征处理、特征选择。

数据预处理和特征处理:【机器学习】sklearn对数据预处理
(补用随机森林填补缺失值:【机器学习】集成学习(以随机森林为例))

特征选择:【机器学习】sklearn特征选择(feature selection)


总结

实际项目中:
【机器学习】项目数据处理部分,机器学习,机器学习,人工智能,数据挖掘

  1. 通过数据探索可视化:
  • 找出异常值并进行处理,一些不符合常理的值,视业务逻辑而定。
  • 缺失值的处理,缺失很少的可以直接删除,其他的填均值、中位数、众数,或者使用逻辑森林来进行缺失值的填充
  • 数据处理:连续性(二值化与分段),分类型(编码与哑变量)

具体参考:文章来源地址https://www.toymoban.com/news/detail-730637.html

  • 【机器学习】sklearn对数据预处理
  • 【机器学习】集成学习(以随机森林为例) (看随机森林填充缺失值部分)
  1. 特征选择
  • 通过特征相关性,热力图,直接选择一些相关性较高的特征或者删除相关性不高的特征。
  • 过滤法,嵌入法,包装法来进行特征选择
  • 降维算法来达到特征选择的目的

具体参考:

  • 本文中数据探索部分热力图
  • 【机器学习】sklearn特征选择(feature selection)(过滤法,嵌入法,包装法)
  • 【机器学习】sklearn降维算法PCA

到了这里,关于【机器学习】项目数据处理部分的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Java在物联网领域的应用非常广泛,涵盖了设备连接、数据处理、应用程序开发、安全性、嵌入式系统开发、消息队列和流处理、机器学习和人工智能以及跨平台和多语言集成等方面

    Java作为一种通用编程语言,在物联网(IoT)领域的应用也非常广泛。以下是一些Java在物联网中的典型应用: 开发物联网应用程序 :Java是一种高级编程语言,具有丰富的库和工具,使得开发物联网应用程序变得容易。Java可以用于开发各种物联网应用程序,如智能家居、智能

    2024年02月03日
    浏览(78)
  • 数据预处理的人工智能与深度学习:如何提高模型性能

    数据预处理是人工智能(AI)和深度学习(DL)领域中的一个关键环节,它涉及到数据清洗、数据转换、数据归一化、数据增强等多种操作,以提高模型性能。在过去的几年里,随着数据规模的增加和复杂性的提高,数据预处理的重要性得到了广泛认识。本文将从以下几个方面进行

    2024年02月19日
    浏览(79)
  • 【机器学习6】数据预处理(三)——处理类别数据(有序数据和标称数据)

    在【机器学习4】构建良好的训练数据集——数据预处理(一)处理缺失值及异常值这一篇文章中,主要说明热数据预处理的重要性以及如何处理缺失值及异常值这些数值特征。然而,在现实生活中遇到的数据集往往不仅仅只会包含 数值型特征 ,还会包含一个或者多个 类别特征

    2024年02月12日
    浏览(46)
  • 【机器学习5】数据处理(二)Pandas:表格处理

    Pandas提供了三种数据类型,分别是 Series 、 DataFrame 和 Panel 。Series用于保存一维数据,DataFrame用于保存二维数据,Panel用于保存三维数据或者可变维数据。平时的表格处理数据分析最常用的数据类型是 Series 和 DataFrame ,Panel较少用到。 Series本质上是一个含有索引的 一维数组

    2024年02月13日
    浏览(46)
  • 机器学习:数据处理与特征工程

    机器学习中的数据处理和特征工程是非常关键的步骤,它们直接影响模型的性能和泛化能力。以下是一些常见的数据处理和特征工程技术: 数据处理: 缺失值处理: 处理数据中的缺失值,可以选择删除缺失值、填充均值/中位数/众数,或使用插值方法。 异常值处理: 检测和

    2024年01月16日
    浏览(42)
  • 机器学习(8)---数据预处理

     1. 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。 譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度. 而在

    2024年02月09日
    浏览(42)
  • 机器学习实战4-数据预处理

    导库 归一化 另一种写法 将归一化的结果逆转 用numpy实现归一化 逆转 导库 实例化 查看属性 查看结果 逆标准化 关于如何选择这两种无量纲化的方式要具体问题具体分析,但是我们一般在机器学习算法中选择标准化,这就好比我们能让他符合标准正态分布为什么不呢?而且

    2024年02月13日
    浏览(47)
  • 【机器学习】处理不平衡的数据集

            假设您在一家给定的公司工作,并要求您创建一个模型,该模型根据您可以使用的各种测量来预测产品是否有缺陷。您决定使用自己喜欢的分类器,根据数据对其进行训练,瞧:您将获得96.2%的准确率!         你的老板很惊讶,决定使用你的模型,没有任何

    2024年02月11日
    浏览(40)
  • 【机器学习】数据清洗之处理缺失点

    🎈个人主页:甜美的江 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:机器学习 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 引言: 在机器学习领域,数据被广泛认为是驱动模型性能的关键。然而,在真实世界的数据中,缺

    2024年02月20日
    浏览(43)
  • 大数据处理中的数据处理与算法优化:机器学习在Hadoop处理中的应用

    作者:禅与计算机程序设计艺术 大数据处理中的数据处理与算法优化:机器学习在Hadoop处理中的应用 引言 随着大数据时代的到来,大量的数据处理需求不断增加,数据处理质量和效率成为企业、政府、科研机构等用户关注的焦点。机器学习作为一种新兴的数据处理技术,在

    2024年02月13日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包