OpenCV实现“蓝线挑战“特效

这篇具有很好参考价值的文章主要介绍了OpenCV实现“蓝线挑战“特效。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原理

算法原理可以分为三个流程:

1、将视频(图像)从(顶->底)或(左->右)逐行(列)扫描图像。

2、将扫描完成的行(列)像素重新生成定格图像。

3、使用原帧图像像素填充未扫描到的像素。

图像扫描

首先第一步,拿到一个视频(很多帧图像)可以简单的看成图像处理。我们需要将图像从顶到底逐行进行像素扫描,当然也可以从左到右逐列扫描,这要看你想要实现什么样的效果。在这里,我实现的是从上到下逐行扫描。效果如图所示。

OpenCV实现“蓝线挑战“特效,OpenCV,图像视频处理,opencv,人工智能,计算机视觉

 生成定格图像

所谓生成定格图像就是将我们每扫描到的行像素重新进行绘制。

    //从顶向下逐行扫描图像
    if (h < height)
    {
        h++;
        //将扫描到的图像像素进行重新绘制,生成新图像
        for (int j = 0; j < width; j++)
        {
            for (int c = 0; c < 3; c++)
            {
                temp.at<Vec3b>(h, j)[c] = canvas.at<Vec3b>(h, j)[c];
            }
        }
        //绘制扫描过程
        line(canvas, Point(0, h), Point(width, h), Scalar(255, 255, 0), 2);
    }

 OpenCV实现“蓝线挑战“特效,OpenCV,图像视频处理,opencv,人工智能,计算机视觉

 如图所示,这是使用上面代码段实现的逐行扫描生成定格图像。从效果上看,已经得到了我们想要的大致效果了。不过现在的问题是,经扫描到的行有像素填充,未扫描到的行还是漆黑一片。所以接下来我们需要做的就是将未扫描到的行用原图进行填充。具体请看源码注释。

图像混合

//将两幅图像进行线性混合
bool Linear_Blend(Mat src1, Mat src2, Mat& dst)
{
    /*
    参数说明:
    src1:生成的定格图像。由于生成的定格图像是从顶往下逐行扫描,故在扫描线下的像素为0
    src2:原视频帧图像
    dst:新生成的定格图像。
    算法原理:经扫描到的像素用src1进行填充,未扫描到的像素用src2进行填充,这样就可以得到我们所要的效果了。
    */

    for (int i = 0; i < src1.rows; i++)
    {
        for (int j = 0; j < src1.cols; j++)
        {
            for (int c = 0; c < 3; c++)
            {
                if (src1.at<Vec3b>(i, j)[0] != 0)
                {
                    dst.at<Vec3b>(i, j)[c] = src1.at<Vec3b>(i, j)[c];
                }
                else
                {
                    dst.at<Vec3b>(i, j)[c] = src2.at<Vec3b>(i, j)[c];
                }
            }
        }
    }

    return true;
}

 效果

OpenCV实现“蓝线挑战“特效,OpenCV,图像视频处理,opencv,人工智能,计算机视觉文章来源地址https://www.toymoban.com/news/detail-730658.html

 源码

#include<iostream>
#include<opencv2/opencv.hpp>
using namespace std;
using namespace cv;

/*
抖音特效:蓝线挑战
算法原理:
    1、将视频(图像)从(顶->底)或(左->右)逐行(列)扫描图像。
    2、将扫描完成的行(列)像素重新生成定格图像
    3、使用原帧图像像素填充未扫描到的像素
*/

//将两幅图像进行线性混合
bool Linear_Blend(Mat src1, Mat src2, Mat& dst)
{
    /*
    参数说明:
    src1:生成的定格图像。由于生成的定格图像是从顶往下逐行扫描,故在扫描线下的像素为0
    src2:原视频帧图像
    dst:新生成的定格图像。
    算法原理:经扫描到的像素用src1进行填充,未扫描到的像素用src2进行填充,这样就可以得到我们所要的效果了。
    */

    for (int i = 0; i < src1.rows; i++)
    {
        for (int j = 0; j < src1.cols; j++)
        {
            for (int c = 0; c < 3; c++)
            {
                if (src1.at<Vec3b>(i, j)[0] != 0)
                {
                    dst.at<Vec3b>(i, j)[c] = src1.at<Vec3b>(i, j)[c];
                }
                else
                {
                    dst.at<Vec3b>(i, j)[c] = src2.at<Vec3b>(i, j)[c];
                }
            }
        }
    }

    return true;
}

int main()
{
    VideoCapture capture;
    capture.open("test.avi");
    if (!capture.isOpened())
    {
        cout << "can not open the camera!" << endl;
        system("pause");
        return -1;
    }

    int width = capture.get(CAP_PROP_FRAME_WIDTH);//视频帧宽
    int height = capture.get(CAP_PROP_FRAME_HEIGHT);//视频帧高

    //保存视频
    VideoWriter writer;
    int fourcc = writer.fourcc('m', 'p', '4', 'v'); //视频编码
    Size size(capture.get(CAP_PROP_FRAME_WIDTH), capture.get(CAP_PROP_FRAME_HEIGHT));
    writer.open("result.avi", fourcc, 30, size, true);

    int h = 0;//定义变量,代表当前扫描高度

    //用于生成定格照
    Mat temp = Mat::zeros(Size(width, height), CV_8UC3);
    
    Mat frame;
    while (capture.read(frame))
    {
        //将图像拷贝一份,用于每帧更新
        Mat canvas = frame.clone();

        //从顶向下逐行扫描图像
        if (h < height)
        {
            h++;
            //将扫描到的图像像素进行重新绘制,生成新图像
            for (int j = 0; j < width; j++)
            {
                for (int c = 0; c < 3; c++)
                {
                    temp.at<Vec3b>(h, j)[c] = canvas.at<Vec3b>(h, j)[c];
                }
            }
            //绘制扫描过程
            line(canvas, Point(0, h), Point(width, h), Scalar(255, 255, 0), 2);
        }

        Mat result = Mat::zeros(frame.size(), frame.type());//蓝线挑战最终定格图
        Linear_Blend(temp, canvas, result); //将两张图像进行像素叠加

        //writer.write(temp);//进行视频保存

        imshow("定格图像", temp);
        imshow("原视频帧", canvas);
        imshow("蓝线挑战", result);

        char key = waitKey(10);
        if (key == 27) break;
    }

    capture.release();
    system("pause");
    return 0;
}

到了这里,关于OpenCV实现“蓝线挑战“特效的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之十一 简单给视频添加水印图片效果

    目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之十一 简单给视频添加水印图片效果 一、简单介绍 二、简单给视频添加水印图片效果实现原理 三、简单给视频添加水印图片效果案例实现简单步骤 四、注意事项 Python是一种跨平台的计算机程序设计语

    2024年04月25日
    浏览(74)
  • Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之六 简单指定视频某片段慢放效果

    目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之六 简单指定视频某片段慢放效果 一、简单介绍 二、简单指定视频某片段慢放效果实现原理 三、简单指定视频某片段慢放效果案例实现简单步骤 四、注意事项 Python是一种跨平台的计算机程序设计语言

    2024年04月14日
    浏览(61)
  • 【OpenCV实现图像:用Python生成图像特效,报错ValueError: too many values to unpack (expected 3)】

    Python是一种功能强大的编程语言,也是图像处理领域中常用的工具之一。通过使用Python的图像处理库(例如Pillow、OpenCV等),开发者可以实现各种各样的图像特效。这些特效包括但不限于:滤镜效果(如黑白、模糊、锐化等)、颜色转换、边缘检测、形状识别、图像合成和增

    2024年02月06日
    浏览(43)
  • opencv 图像和视频处理的基本操作(python)

    原图:   1 图片的获取 主要通过cv2.imread(src)函数进行获取 2 图片的显示 3 ROI区域(图片截取) 4 图片的RGB通道划分 注意cv2.imread()获取的图片通过顺序为BGR,而非RGB,即B为0,G为1,R为2  保留R通道  保留G通道   保留B通道   5 RGB通道合成   6 边界填充 主要是通过cv2.copyMakeBo

    2023年04月21日
    浏览(67)
  • OpenCV-Python中的图像处理-视频分析

    学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象: Meanshift 算法的基本原理是和很简单的。假设我们有一堆点(比如直方 图反向投影得到的点),和一个小的圆形窗口,我们要完成的任务就是将这个窗 口移动到最大灰度密度处(或者是点最多的地方)。如下图所

    2024年02月12日
    浏览(53)
  • 【opencv+图像处理】(Gui Features in OpenCV) 1-1摄像头:采集摄像头视频,读取视频帧,录制视频

    本专栏代码总库地址 https://github.com/xiawei20161308104/xv_opencv_tutorials 本节代码路径 xv_opencv_tutorials/VideoRelated/get_started_with_videos.py xv_opencv_tutorials/VideoRelated/get_and_set_video.py xv_opencv_tutorials/VideoRelated/save_video.py 参考官网 https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html 从设备,可以是摄像

    2024年02月03日
    浏览(72)
  • 【OpenCV实现图像:使用OpenCV进行图像处理之透视变换】

    透视变换(Perspective Transformation)是一种图像处理中常用的变换手段,它用于将图像从一个视角映射到另一个视角,常被称为投影映射。透视变换可以用于矫正图像中的透视畸变,使得图像中的物体在新的视平面上呈现更加规则的形状。 透视变换通常涉及到寻找图像中的特定

    2024年02月03日
    浏览(64)
  • OpenCV图像处理-视频分割静态背景-MOG/MOG2/GMG

    视频背景扣除原理:视频是一组连续的帧(一幅幅图组成),帧与帧之间关系密切(GOP/group of picture),在GOP中,背景几乎是不变的,变的永远是前景。 背景分离(BS)是一种通过使用静态相机来生成前景掩码(即包含属于场景中的移动对象像素的二进制图像)的常用技术 顾名

    2024年02月15日
    浏览(43)
  • 【QT课程设计】五:部分内容修正、利用opencv读入视频并进行部分图像处理

    导航索引帖 前置文章,课设第四篇 上篇文章中,我们基本完成了图片处理的相关功能要求,本文章将会对前文的一些错误进行修正,并且开始视频部分。 =。=最近博客的更新因为看世界杯耽误了很多,这篇文章打算一次性更新多些内容。 错误描述 前文中,我们并没有考虑到

    2024年02月02日
    浏览(47)
  • 【OpenCV实现平滑图像处理】

    在图像处理中,低通滤波器是一种常用的技术,用于平滑、模糊或降低图像的噪音。这种滤波器通过去除图像中高频部分(即变化较快的部分)来实现这些效果。通过应用2D卷积操作,低通滤波器将每个像素的值与其周围像素的值进行加权平均,从而实现图像的平滑处理。 在

    2024年02月08日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包