计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python

这篇具有很好参考价值的文章主要介绍了计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 机器视觉 人脸识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate文章来源地址https://www.toymoban.com/news/detail-730669.html

1 机器学习-人脸识别过程

基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。

机器学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸特征向量化
  • 人脸识别
    计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python,python,java

人脸检测

人脸检测用于确定人脸在图像中的大小和位置,即解决“人脸在哪里”的问题,把真正的人脸区域从图像中裁剪出来,便于后续的人脸特征分析和识别。下图是对一张图像的人脸检测结果:

计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python,python,java

人脸对其

同一个人在不同的图像序列中可能呈现出不同的姿态和表情,这种情况是不利于人脸识别的。

所以有必要将人脸图像都变换到一个统一的角度和姿态,这就是人脸对齐。

它的原理是找到人脸的若干个关键点(基准点,如眼角,鼻尖,嘴角等),然后利用这些对应的关键点通过相似变换(Similarity
Transform,旋转、缩放和平移)将人脸尽可能变换到标准人脸。

下图是一个典型的人脸图像对齐过程:
计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python,python,java
这幅图就更加直观了:
计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python,python,java

人脸特征向量化

这一步是将对齐后的人脸图像,组成一个特征向量,该特征向量用于描述这张人脸。

但由于,一幅人脸照片往往由比较多的像素构成,如果以每个像素作为1维特征,将得到一个维数非常高的特征向量, 计算将十分困难;而且这些像素之间通常具有相关性。

所以我们常常利用PCA技术对人脸描述向量进行降维处理,保留数据集中对方差贡献最大的人脸特征来达到简化数据集的目的

PCA人脸特征向量降维示例代码:

#coding:utf-8
from numpy import *
from numpy import linalg as la
import cv2
import os
 
def loadImageSet(add):
    FaceMat = mat(zeros((15,98*116)))
    j =0
    for i in os.listdir(add):
        if i.split('.')[1] == 'normal':
            try:
                img = cv2.imread(add+i,0)
            except:
                print 'load %s failed'%i
            FaceMat[j,:] = mat(img).flatten()
            j += 1
    return FaceMat
 
def ReconginitionVector(selecthr = 0.8):
    # step1: load the face image data ,get the matrix consists of all image
    FaceMat = loadImageSet('D:\python/face recongnition\YALE\YALE\unpadded/').T
    # step2: average the FaceMat
    avgImg = mean(FaceMat,1)
    # step3: calculate the difference of avgimg and all image data(FaceMat)
    diffTrain = FaceMat-avgImg
    #step4: calculate eigenvector of covariance matrix (because covariance matrix will cause memory error)
    eigvals,eigVects = linalg.eig(mat(diffTrain.T*diffTrain))
    eigSortIndex = argsort(-eigvals)
    for i in xrange(shape(FaceMat)[1]):
        if (eigvals[eigSortIndex[:i]]/eigvals.sum()).sum() >= selecthr:
            eigSortIndex = eigSortIndex[:i]
            break
    covVects = diffTrain * eigVects[:,eigSortIndex] # covVects is the eigenvector of covariance matrix
    # avgImg 是均值图像,covVects是协方差矩阵的特征向量,diffTrain是偏差矩阵
    return avgImg,covVects,diffTrain
 
def judgeFace(judgeImg,FaceVector,avgImg,diffTrain):
    diff = judgeImg.T - avgImg
    weiVec = FaceVector.T* diff
    res = 0
    resVal = inf
    for i in range(15):
        TrainVec = FaceVector.T*diffTrain[:,i]
        if  (array(weiVec-TrainVec)**2).sum() < resVal:
            res =  i
            resVal = (array(weiVec-TrainVec)**2).sum()
    return res+1
 
if __name__ == '__main__':
 
    avgImg,FaceVector,diffTrain = ReconginitionVector(selecthr = 0.9)
    nameList = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15']
    characteristic = ['centerlight','glasses','happy','leftlight','noglasses','rightlight','sad','sleepy','surprised','wink']
 
    for c in characteristic:
 
        count = 0
        for i in range(len(nameList)):
 
            # 这里的loadname就是我们要识别的未知人脸图,我们通过15张未知人脸找出的对应训练人脸进行对比来求出正确率
            loadname = 'D:\python/face recongnition\YALE\YALE\unpadded\subject'+nameList[i]+'.'+c+'.pgm'
            judgeImg = cv2.imread(loadname,0)
            if judgeFace(mat(judgeImg).flatten(),FaceVector,avgImg,diffTrain) == int(nameList[i]):
                count += 1
        print 'accuracy of %s is %f'%(c, float(count)/len(nameList))  # 求出正确率

人脸识别

这一步的人脸识别,其实是对上一步人脸向量进行分类,使用各种分类算法。

比如:贝叶斯分类器,决策树,SVM等机器学习方法。

从而达到识别人脸的目的。

这里分享一个svm训练的人脸识别模型:



    from __future__ import print_function
    
    from time import time
    import logging
    import matplotlib.pyplot as plt
    
    from sklearn.cross_validation import train_test_split
    from sklearn.datasets import fetch_lfw_people
    from sklearn.grid_search import GridSearchCV
    from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    from sklearn.decomposition import RandomizedPCA
    from sklearn.svm import SVC


    print(__doc__)
    
    # Display progress logs on stdout
    logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')


    ###############################################################################
    # Download the data, if not already on disk and load it as numpy arrays
    
    lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
    
    # introspect the images arrays to find the shapes (for plotting)
    n_samples, h, w = lfw_people.images.shape
    
    # for machine learning we use the 2 data directly (as relative pixel
    # positions info is ignored by this model)
    X = lfw_people.data
    n_features = X.shape[1]
    
    # the label to predict is the id of the person
    y = lfw_people.target
    target_names = lfw_people.target_names
    n_classes = target_names.shape[0]
    
    print("Total dataset size:")
    print("n_samples: %d" % n_samples)
    print("n_features: %d" % n_features)
    print("n_classes: %d" % n_classes)


    ###############################################################################
    # Split into a training set and a test set using a stratified k fold
    
    # split into a training and testing set
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.25, random_state=42)


    ###############################################################################
    # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
    # dataset): unsupervised feature extraction / dimensionality reduction
    n_components = 80
    
    print("Extracting the top %d eigenfaces from %d faces"
          % (n_components, X_train.shape[0]))
    t0 = time()
    pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
    print("done in %0.3fs" % (time() - t0))
    
    eigenfaces = pca.components_.reshape((n_components, h, w))
    
    print("Projecting the input data on the eigenfaces orthonormal basis")
    t0 = time()
    X_train_pca = pca.transform(X_train)
    X_test_pca = pca.transform(X_test)
    print("done in %0.3fs" % (time() - t0))

    ###############################################################################
    # Train a SVM classification model
    
    print("Fitting the classifier to the training set")
    t0 = time()
    param_grid = {'C': [1,10, 100, 500, 1e3, 5e3, 1e4, 5e4, 1e5],
                  'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
    clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
    clf = clf.fit(X_train_pca, y_train)
    print("done in %0.3fs" % (time() - t0))
    print("Best estimator found by grid search:")
    print(clf.best_estimator_)
    
    print(clf.best_estimator_.n_support_)
    ###############################################################################
    # Quantitative evaluation of the model quality on the test set
    
    print("Predicting people's names on the test set")
    t0 = time()
    y_pred = clf.predict(X_test_pca)
    print("done in %0.3fs" % (time() - t0))
    
    print(classification_report(y_test, y_pred, target_names=target_names))
    print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))


    ###############################################################################
    # Qualitative evaluation of the predictions using matplotlib
    
    def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
        """Helper function to plot a gallery of portraits"""
        plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
        plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
        for i in range(n_row * n_col):
            plt.subplot(n_row, n_col, i + 1)
            # Show the feature face
            plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
            plt.title(titles[i], size=12)
            plt.xticks(())
            plt.yticks(())

    # plot the result of the prediction on a portion of the test set
    
    def title(y_pred, y_test, target_names, i):
        pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
        true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
        return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)
    
    prediction_titles = [title(y_pred, y_test, target_names, i)
                         for i in range(y_pred.shape[0])]
    
    plot_gallery(X_test, prediction_titles, h, w)
    
    # plot the gallery of the most significative eigenfaces
    
    eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
    plot_gallery(eigenfaces, eigenface_titles, h, w)
    
    plt.show()



计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python,python,java

2 深度学习-人脸识别过程

不同于机器学习模型的人脸识别,深度学习将人脸特征向量化,以及人脸向量分类结合到了一起,通过神经网络算法一步到位。

深度学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸识别

人脸检测

深度学习在图像分类中的巨大成功后很快被用于人脸检测的问题,起初解决该问题的思路大多是基于CNN网络的尺度不变性,对图片进行不同尺度的缩放,然后进行推理并直接对类别和位置信息进行预测。另外,由于对feature
map中的每一个点直接进行位置回归,得到的人脸框精度比较低,因此有人提出了基于多阶段分类器由粗到细的检测策略检测人脸,例如主要方法有Cascade CNN、
DenseBox和MTCNN等等。

MTCNN是一个多任务的方法,第一次将人脸区域检测和人脸关键点检测放在了一起,与Cascade
CNN一样也是基于cascade的框架,但是整体思路更加的巧妙合理,MTCNN总体来说分为三个部分:PNet、RNet和ONet,网络结构如下图所示。

计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python,python,java

人脸识别

人脸识别问题本质是一个分类问题,即每一个人作为一类进行分类检测,但实际应用过程中会出现很多问题。第一,人脸类别很多,如果要识别一个城镇的所有人,那么分类类别就将近十万以上的类别,另外每一个人之间可获得的标注样本很少,会出现很多长尾数据。根据上述问题,要对传统的CNN分类网络进行修改。

我们知道深度卷积网络虽然作为一种黑盒模型,但是能够通过数据训练的方式去表征图片或者物体的特征。因此人脸识别算法可以通过卷积网络提取出大量的人脸特征向量,然后根据相似度判断与底库比较完成人脸的识别过程,因此算法网络能不能对不同的人脸生成不同的特征,对同一人脸生成相似的特征,将是这类embedding任务的重点,也就是怎么样能够最大化类间距离以及最小化类内距离。

Metric Larning

深度学习中最先应用metric
learning思想之一的便是DeepID2了。其中DeepID2最主要的改进是同一个网络同时训练verification和classification(有两个监督信号)。其中在verification
loss的特征层中引入了contrastive loss。

Contrastive
loss不仅考虑了相同类别的距离最小化,也同时考虑了不同类别的距离最大化,通过充分运用训练样本的label信息提升人脸识别的准确性。因此,该loss函数本质上使得同一个人的照片在特征空间距离足够近,不同人在特征空间里相距足够远直到超过某个阈值。(听起来和triplet
loss有点像)。

计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python,python,java

计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python,python,java

计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python,python,java

3 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

到了这里,关于计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机竞赛 深度学习 opencv python 公式识别(图像识别 机器视觉)

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的数学公式识别算法实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:4分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/d

    2024年02月07日
    浏览(40)
  • 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习多目标跟踪 实时检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-sen

    2024年02月05日
    浏览(44)
  • 计算机竞赛 深度学习人体跌倒检测 -yolo 机器视觉 opencv python

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习的人体跌倒检测算法研究与实现 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https

    2024年02月08日
    浏览(34)
  • 计算机设计大赛 深度学习人脸表情识别算法 - opencv python 机器视觉

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习人脸表情识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/

    2024年02月21日
    浏览(51)
  • 计算机竞赛 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的动物识别算法研究与实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学

    2024年02月09日
    浏览(43)
  • 【计算机毕设选题】机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 -python

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(34)
  • 计算机竞赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python

    🔥 优质竞赛项目系列,今天要分享的是 基于机器视觉opencv的手势检测 手势识别 算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 普通机器视觉手势检测的基本流程如下: 其中轮廓的提取,多边形

    2024年02月07日
    浏览(36)
  • 基于深度学习的人脸表情识别 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸表情识别 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 面部表情识别技术源于1971年心理学家Ekman和Friesen的一项研究,他们提出人类主要有

    2024年02月06日
    浏览(41)
  • 计算机竞赛 基于深度学习的人脸表情识别

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸表情识别 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 面部表情识别技术源于1971年心理学家Ekman和Friesen的一项研究,他们提出人类主要有

    2024年02月10日
    浏览(45)
  • 计算机竞赛 深度学习 python opencv 实现人脸年龄性别识别

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的人脸年龄性别识别算法实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 🧿 更多资料, 项目分享: https://gitee

    2024年02月07日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包