计算机视觉 激光雷达结合无监督学习进行物体检测的工作原理

这篇具有很好参考价值的文章主要介绍了计算机视觉 激光雷达结合无监督学习进行物体检测的工作原理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、简述

        激光雷达是目前正在改变世界的传感器。它集成在自动驾驶汽车、自主无人机、机器人、卫星、火箭等中。该传感器使用激光束了解世界,并测量激光击中目标返回所需的时间,输出是点云信息,利用这些信息,我们可以从3D点云中查找障碍物。

        从自动驾驶汽车的角度看激光雷达就类似下面这张图的感觉,得到并处理点云、使用 3D 边界框检测障碍物以及实时分割可驾驶区域。

计算机视觉 激光雷达结合无监督学习进行物体检测的工作原理,深度学习从入门到精通,1024程序员节,深度学习,自动驾驶,人工智能,计算机视觉,特斯拉,神经网络

二、LiDAR — 3D 光传感器

        LiDAR 传感器利用光工作。LiDAR 代表光检测和测距。它们可以检测长达 300 米的障碍物并准确估计其位置。在自动驾驶汽车中,这是用于位置估计的最准确的传感器。

计算机视觉 激光雷达结合无监督学习进行物体检测的工作原理,深度学习从入门到精通,1024程序员节,深度学习,自动驾驶,人工智能,计算机视觉,特斯拉,神经网络

        LiDAR 传感器由两部分组成:激光发射(顶部)和激光接收(底部)。发射系统通过利用激光束层来文章来源地址https://www.toymoban.com/news/detail-730793.html

到了这里,关于计算机视觉 激光雷达结合无监督学习进行物体检测的工作原理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【计算机视觉|人脸建模】学习从图像中回归3D面部形状和表情而无需3D监督

    【计算机视觉|人脸建模】学习从图像中回归3D面部形状和表情而无需3D监督

    本系列博文为深度学习/计算机视觉论文笔记,转载请注明出处 标题: Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision 链接:[1905.06817] Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision (arxiv.org) 从单张图像估计3D面部形状必须对光照、头部姿势

    2024年02月07日
    浏览(40)
  • 【计算机视觉】DINOv2(Facebook自监督视觉学习)的环境部署和使用代码示范(含源代码)

    【计算机视觉】DINOv2(Facebook自监督视觉学习)的环境部署和使用代码示范(含源代码)

    我的代码示范已经上传了Kaggle平台,具体的笔记地址为: DINOv2:在没有监督的情况下学习鲁棒的视觉特征 这是第一种训练计算机视觉模型的方法,它使用自我监督学习来实现与该领域使用的标准方法相匹配或超过标准方法的结果。 最近,自然语言处理在大量数据上进行模型

    2024年02月12日
    浏览(8)
  • 主动学习与计算机视觉的结合:实现更智能的视觉系统

    计算机视觉技术在过去的几年里取得了巨大的进步,这主要是由于深度学习技术的蓬勃发展。深度学习技术,特别是卷积神经网络(CNN),已经成为计算机视觉任务的主要工具。然而,尽管深度学习技术在许多任务中表现出色,但它们仍然存在一些问题,其中一个主要问题是数

    2024年02月20日
    浏览(14)
  • 计算机视觉结合深度学习项目-智能停车场空车位实时识别

    计算机视觉结合深度学习项目-智能停车场空车位实时识别

    😊😊😊 欢迎来到本博客 😊😊😊 本次博客内容将继续讲解关于OpenCV的相关知识 🎉 作者简介 : ⭐️⭐️⭐️ 目前计算机研究生在读。主要研究方向是人工智能和群智能算法方向。目前熟悉python网页爬虫、机器学习、计算机视觉(OpenCV)、群智能算法。然后正在学习深度

    2024年02月06日
    浏览(9)
  • 将Apple Vision Pro和visionOS与计算机视觉结合使用

    将Apple Vision Pro和visionOS与计算机视觉结合使用

    在2023年6月5日的WWDC大会上,苹果宣布推出多年来最大规模的硬件和软件组合产品。今年的“One more thing”(“还有一件事”)发布是苹果视觉专业版(Apple Vision Pro),这是一款集成了苹果生态系统的新型空间计算头戴式设备。 苹果视觉专业版是一个垂直整合的硬件和软件平

    2024年02月08日
    浏览(6)
  • 【深度学习: 计算机视觉】如何改进计算机视觉数据集

    【深度学习: 计算机视觉】如何改进计算机视觉数据集

    机器学习算法需要大量数据集来训练、提高性能并生成组织所需的结果。 数据集是计算机视觉应用程序和模型运行的燃料。数据越多越好。这些数据应该是高质量的,以确保人工智能项目获得最佳的结果和产出。 获取训练机器学习模型所需数据的最佳方法之一是使用开源数

    2024年02月20日
    浏览(11)
  • 如何学习计算机视觉

    学习计算机视觉可以通过以下步骤进行: 了解基本概念和原理:首先,你可以学习计算机视觉的基本概念和原理,包括图像处理、特征提取、目标检测、物体识别等。这些基础知识将帮助你理解计算机视觉的工作原理。 学习算法和技术:学习计算机视觉的算法和技术是非常

    2024年01月21日
    浏览(11)
  • 【探索AI】三十一-计算机视觉(六)深度学习在计算机视觉中的应用

    深度学习在计算机视觉中的应用已经取得了显著的成果,并且正在逐步改变我们对图像和视频信息的处理和理解方式。下面将详细讲解深度学习在计算机视觉中的几个关键应用。 首先,我们来看图像分类。图像分类是计算机视觉的基本任务之一,它涉及到将输入的图像自动归

    2024年04月09日
    浏览(18)
  • 深度学习与计算机视觉

    深度学习与计算机视觉

    目录 1 深度学习 1.1 人工智能 1.2 机器学习 1.3 深度学习 1.3.1 深度学习发展历程 1.3.2 深度学习中的核心因素 1.3.3 深度学习模型分类 1.3.4 深度学习框架 2 计算机视觉 人工智能、机器学习、深度学习这三者的关系: 在实现人工智能的众多算法中,机器学习是发展较为快速的

    2024年02月06日
    浏览(15)
  • 转移学习的计算机视觉教程

    引用这些注释, 实际上,很少有人从头开始训练整个卷积网络(使用随机初始化),因为拥有足够大小的数据集相对很少。 相反,通常在非常大的数据集上对 ConvNet 进行预训练(例如 ImageNet,其中包含 120 万个具有 1000 个类别的图像),然后将 ConvNet 用作初始化或固定特征提取

    2024年02月16日
    浏览(12)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包