LeetCode 509 斐波那契数(动态规划)

这篇具有很好参考价值的文章主要介绍了LeetCode 509 斐波那契数(动态规划)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 509. 斐波那契数 - 力扣(LeetCode)

 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:


示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:
输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:
输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

【思路】动态规划

动规五部曲:

1.确定dp数组以及下标的含义

  • dp[i]的定义为:第i个数的斐波那契数值是dp[i]

2.确定递推公式

  • 状态转移方式 dp[i] = dp[i-1] + dp[i-2];

3.dp数组如何初始化

  • dp[0] = 0;
  • dp[1] = 1;

4.确定遍历顺序

        从递归公式dp[i] = dp[i-1] + dp[i-2];中可以看出,dp[i]是依赖dp[i-1] dp[i-2],那么遍历的顺序一定是从前到后遍历的

5.举例推导dp数组

      i: 0 1 2 3 4 5 6 7

dp[i]: 0 1 1 2 3 5 8 11

  • 动态递推公式 : dp[i] = dp[i-1] + dp[i-2];
class Solution {
public:
    // 方法一:递归
    // 缺点:效率低
    int fib(int n) {
        if(n < 2) return n;
        return fib(n-1) + fib(n-2);
    }

    // 方法二
    // ① 动态规划  ② 时间复杂度:O(n) 空间复杂度:O(n)
    int fib(int n) { 
        if(n <= 1) return n; 
        vector<int> dp(n+1);
        dp[0] = 0;dp[1] = 1;
        for(int i = 2; i <= n; i++) {
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }

    // 方法二 进一步优化
    // ① 动态规划  ② 时间复杂度:O(n) 空间复杂度:O(1)
    int fib(int n) { 
        if(n <= 1) return n; 
        int dp[2];
        dp[0] = 0;dp[1] = 1;
        for(int i = 2; i <= n; i++) {
            int sum = dp[0] + dp[1];
            dp[0] = dp[1];
            dp[1] = sum;
        }
        return dp[1];
    }
};

本题和爬楼梯类似,可以看我的往期文章

LeetCode 509 斐波那契数(动态规划),动态规划,leetCode,leetcode,斐波那契,动态规划,维护两个数值

leetCode 746. 使用最小花费爬楼梯 + 记忆化搜索 + 递推 + 动态规划 + 空间优化-CSDN博客https://heheda.blog.csdn.net/article/details/134192825?spm=1001.2014.3001.5502LeetCode 70.爬楼梯 + 记忆化搜索 + 递推 + 动态规划 + 空间优化-CSDN博客https://heheda.blog.csdn.net/article/details/134192204?spm=1001.2014.3001.5502参考和推荐文章:

代码随想录 (programmercarl.com)https://programmercarl.com/0509.%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0.html#%E6%80%9D%E8%B7%AF文章来源地址https://www.toymoban.com/news/detail-731049.html

到了这里,关于LeetCode 509 斐波那契数(动态规划)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 力扣第509题 斐波那契数 新手动态规划(推荐参考) c++

    509. 斐波那契数 简单 相关标签 递归   记忆化搜索   数学   动态规划 斐波那契数  (通常用  F(n)  表示)形成的序列称为  斐波那契数列  。该数列由  0  和  1  开始,后面的每一项数字都是前面两项数字的和。也就是: 给定  n  ,请计算  F(n)  。 示例 1: 示例 2:

    2024年02月07日
    浏览(49)
  • LeetCode:509. 斐波那契数 && 70. 爬楼梯 && 746. 使用最小花费爬楼梯

    斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n 1 给定 n ,请计算 F(n) 。 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬

    2024年02月05日
    浏览(48)
  • LeetCode刷题笔记【29】:动态规划专题-1(斐波那契数、爬楼梯、使用最小花费爬楼梯)

    动态规划(DP,Dynamic Programming)。 其解题思路对比 贪心算法的“直接选局部最优然后推导出全局最优” ;倾向于“ 由之前的结果推导得到后续的结果 ”。 很多时候二者具有相似性,不必死扣概念。 动态规划题目的核心是dp数组的概念和构建(递推公式); 所以具体的解题步骤

    2024年02月09日
    浏览(40)
  • 算法Day38 | 动态规划,509. 斐波那契数, 70. 爬楼梯, 746. 使用最小花费爬楼梯

    动态规划是一种解决问题的算法思想。它通常用于优化问题,其中要求找到一个最优解或最大化(最小化)某个目标函数。 动态规划的核心思想是 将问题分解成更小的子问题,并通过存储子问题的解来避免重复计算 。这样,可以通过解决子问题来构建原始问题的解。动态规

    2024年02月09日
    浏览(58)
  • 算法训练第三十八天|动态规划理论基础、509. 斐波那契数 、70. 爬楼梯 、 746. 使用最小花费爬楼梯

    参考:https://programmercarl.com/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 动态规划是什么 动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。 所以 动态规划中每一个状态一定是由上一个状态推导出来的 ,这一

    2024年02月04日
    浏览(40)
  • 【动态规划】是泰波那契数,不是斐波那契数

    Problem: 1137. 第 N 个泰波那契数 首先我们来解读一下本题的意思🔍 相信读者在看到【泰波那契数】的时候,不禁会联想到【斐波那契数】,它们呢是一对孪生兄弟,这个 泰波那契数 相当于是 斐波那契数 的加强版 我们首先可以来看到这个递推公式 Tn+3 = Tn + Tn+1 + Tn+2 ,读者可

    2024年02月08日
    浏览(48)
  • 动态规划-斐波那契数

    斐波那契数是一个很好的熟悉和理解动态规划的例子,通过斐波那契数可以更好的理解动态规划的精髓,动态规划是后面的计算是如何借助于前面的计算结果来加快计算速度的。 斐波那契数和斐波那契数列其实可以看成是一道题,只不过两题的限制性条件稍微有差别 斐波那

    2024年02月14日
    浏览(35)
  • 算法刷刷刷|动态规划篇|509.斐波那契数| 70.爬楼梯| 746.使用最小花费爬楼梯| 62.不同路径| 63不同路径2| 343.正数拆分 | 96.不同的二叉搜索树

    509. 斐波那契数 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n 1 给定 n ,请计算 F(n) 。 70.爬楼梯 746.使用最小花费爬楼梯 给你一个整数

    2023年04月23日
    浏览(57)
  • LeetCode第 N 个泰波那契数 (认识动态规划)

    链接: 第 N 个泰波那契数 编写代码 代码空间优化 一般像这种情况我们可以使用滚动数组的方式来解决空间的问题

    2024年02月15日
    浏览(39)
  • LeetCode、1137. 第 N 个泰波那契数【简单,动态规划】

    博主介绍:✌目前全网粉丝2W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。 涵盖技术内容:Java后端、算法、分布式微服务、中间件、前端、运维、ROS等。 博主所有博客文件目录索引:博客目录索引(持续更新) 视频平台:

    2024年02月22日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包