【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】

这篇具有很好参考价值的文章主要介绍了【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现

本文介绍基于libsvm代理模型算法的特征排序方法合集,包括:
1.基于每个特征预测精度进行排序(libsvm代理模型)
2.基于相关系数corr的特征排序(libsvm代理模型)
3.svmrfe_ker(二分类)【后续更新】
4.基于SVM-RFE递归特征消除的特征排序svmrfe_ori(二分类)【后续更新】

一、多输入单输出多分类问题

数据设置 :
分类数据,12输入1输出4分类,357样本

classdata=xlsread('数据集C.xlsx');
X=classdata(:,1:end-1)';% 输入变量
Y=classdata(:,end);%输出标签
[X, ps_input] = mapminmax(X, 0, 1);
X=X';
ptrain_per=0.7;%训练比例 
trainIdx = randperm(size(X,1),ceil(size(X,1)*ptrain_per));%训练样本编号
testIdx = setdiff(1:size(X,1),trainIdx);%测试样本编号
K=10;%10折
cvObj = cvpartition(Y(testIdx),'k',K);
userdata.cvObj = cvObj;
userdata.ft = X(testIdx,:);%测试集输入
userdata.target = Y(testIdx);%测试集输出

nSel = size(X,2);%选择的特征数量 ,可以小于等于变量特征数

1、基于每个特征预测精度进行排序(libsvm代理模型)

即通过每个变量作为输入特征,通过十折平均误差率来对特征进行排序。
累计贡献度为 0.9

【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】,matlab,回归,分类,敏感性分析,特征排序,重要性排序,降维
【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】,matlab,回归,分类,敏感性分析,特征排序,重要性排序,降维

2、基于相关系数corr的特征排序(libsvm代理模型)

适应度函数——测试集平均R2为:0.88588
【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】,matlab,回归,分类,敏感性分析,特征排序,重要性排序,降维
【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】,matlab,回归,分类,敏感性分析,特征排序,重要性排序,降维

二、多输入单输出回归问题

数据设置 :
分类数据,7输入1输出,107样本

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集


ptrain_per=0.7;%训练比例 
trainIdx = randperm(size(res,1),ceil(size(res,1)*ptrain_per));%训练样本编号
testIdx = setdiff(1:size(res,1),trainIdx);%测试样本编号

P_train = res(trainIdx, 1: 7)';
T_train = res(trainIdx, 8)';
M = size(P_train, 2);

P_test = res(testIdx, 1: 7)';
T_test = res(testIdx, 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
K=10;%10折
cvObj = cvpartition(Y(testIdx),'k',K);
userdata.cvObj = cvObj;
userdata.ft = X(testIdx,:);%测试集输入
userdata.target = Y(testIdx);%测试集输出

nSel = size(X,2);%选择的特征数量 ,可以小于等于变量特征数

1、基于每个特征预测精度进行排序(libsvm代理模型)

即通过每个变量作为输入特征,通过十折平均误差率来对特征进行排序。
累计贡献度为 0.9
【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】,matlab,回归,分类,敏感性分析,特征排序,重要性排序,降维
【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】,matlab,回归,分类,敏感性分析,特征排序,重要性排序,降维

2、基于相关系数corr的特征排序(libsvm代理模型)

【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】,matlab,回归,分类,敏感性分析,特征排序,重要性排序,降维
【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】,matlab,回归,分类,敏感性分析,特征排序,重要性排序,降维

三、代码获取

CSDN私信回复“77期”即可获取下载方式。文章来源地址https://www.toymoban.com/news/detail-731220.html

到了这里,关于【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包