《动手学深度学习 Pytorch版》 7.3 网络中的网络(NiN)

这篇具有很好参考价值的文章主要介绍了《动手学深度学习 Pytorch版》 7.3 网络中的网络(NiN)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

LeNet、AlexNet和VGG的设计模式都是先用卷积层与汇聚层提取特征,然后用全连接层对特征进行处理。

AlexNet和VGG对LeNet的改进主要在于扩大和加深这两个模块。网络中的网络(NiN)则是在每个像素的通道上分别使用多层感知机。

import torch
from torch import nn
from d2l import torch as d2l

7.3.1 NiN

NiN的想法是在每个像素位置应用一个全连接层。 如果我们将权重连接到每个空间位置,我们可以将其视为 1 × 1 1\times 1 1×1 卷积层,即是作为在每个像素位置上独立作用的全连接层。 从另一个角度看,是将空间维度中的每个像素视为单个样本,将通道维度视为不同特征(feature)。

NiN块以一个普通卷积层开始,后面是两个 1 × 1 1\times 1 1×1 的卷积层。这两个卷积层充当带有ReLU激活函数的逐像素全连接层。

def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

7.3.2 NiN 模型

最初的 NiN 网络是在 AlexNet 后不久提出的,显然 NiN 网络是从 AlexNet 中得到了一些启示的。 NiN 使用窗口形状为 11 × 11 11\times 11 11×11 5 × 5 5\times 5 5×5 3 × 3 3\times 3 3×3 的卷积层,输出通道数量与 AlexNet 中的相同。每个NiN块后有一个最大汇聚层,汇聚窗口形状为 3 × 3 3\times 3 3×3 ,步幅为 2。

NiN 和 AlexNet 之间的显著区别是 NiN 使用一个 NiN 块取代了全连接层。其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层,生成一个对数几率。

NiN 设计的一个优点是显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。

《动手学深度学习 Pytorch版》 7.3 网络中的网络(NiN),《动手学深度学习 Pytorch版》学习笔记,深度学习,pytorch,网络

net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),
    # 将四维的输出转成二维的输出,其形状为(批量大小,10)
    nn.Flatten())
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape:	 torch.Size([1, 96, 54, 54])
MaxPool2d output shape:	 torch.Size([1, 96, 26, 26])
Sequential output shape:	 torch.Size([1, 256, 26, 26])
MaxPool2d output shape:	 torch.Size([1, 256, 12, 12])
Sequential output shape:	 torch.Size([1, 384, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 384, 5, 5])
Dropout output shape:	 torch.Size([1, 384, 5, 5])
Sequential output shape:	 torch.Size([1, 10, 5, 5])
AdaptiveAvgPool2d output shape:	 torch.Size([1, 10, 1, 1])
Flatten output shape:	 torch.Size([1, 10])

7.3.3 训练模型

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())  # 大约需要二十五分钟,慎跑
loss 0.600, train acc 0.769, test acc 0.775
447.9 examples/sec on cuda:0

《动手学深度学习 Pytorch版》 7.3 网络中的网络(NiN),《动手学深度学习 Pytorch版》学习笔记,深度学习,pytorch,网络

练习

(1)调整 NiN 的超参数,以提高分类准确性。

net2 = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),
    nn.Flatten())

lr, num_epochs, batch_size = 0.15, 12, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net2, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())  # 大约需要三十分钟,慎跑
loss 0.353, train acc 0.871, test acc 0.884
449.5 examples/sec on cuda:0

《动手学深度学习 Pytorch版》 7.3 网络中的网络(NiN),《动手学深度学习 Pytorch版》学习笔记,深度学习,pytorch,网络

学习率调大一点点之后精度更高了,但是波动变的分外严重。


(2)为什么 NiN 块中有两个 1 × 1 1\times 1 1×1 的卷积层?删除其中一个,然后观察和分析实验现象。

def nin_block2(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

net3 = nn.Sequential(
    nin_block2(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block2(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block2(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block2(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),
    # 将四维的输出转成二维的输出,其形状为(批量大小,10)
    nn.Flatten())

lr, num_epochs, batch_size = 0.15, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net3, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())  # 大约需要二十分钟,慎跑
loss 0.309, train acc 0.884, test acc 0.890
607.5 examples/sec on cuda:0

《动手学深度学习 Pytorch版》 7.3 网络中的网络(NiN),《动手学深度学习 Pytorch版》学习笔记,深度学习,pytorch,网络

有时候会更好,有时候会不收敛。


(3)计算 NiN 的资源使用情况。

a. 参数的数量是多少?

b. 计算量是多少?

c. 训练期间需要多少显存?

d. 预测期间需要多少显存?

a. 参数数量:

[ 11 × 11 + 2 ] + [ 5 × 5 + 2 ] + [ 3 × 3 + 2 ] + [ 3 × 3 + 2 ] = 123 + 27 + 11 + 11 = 172 \begin{align} &[11\times 11 + 2] + [5\times 5 + 2] + [3\times 3 + 2] + [3\times 3 + 2]\\ =& 123+27+11+11\\ =& 172 \end{align} ==[11×11+2]+[5×5+2]+[3×3+2]+[3×3+2]123+27+11+11172

b. 计算量:

{ [ ( 224 − 11 + 4 ) / 4 ] 2 × 1 1 2 × 96 + 22 4 2 × 2 } + [ ( 26 − 5 + 2 + 1 ) 2 × 5 2 × 96 × 256 + 2 6 2 × 2 ] + [ ( 12 − 3 + 1 + 1 ) 2 × 3 2 × 256 × 384 + 1 2 2 × 2 ] + [ ( 5 − 3 + 1 + 1 ) 2 × 3 2 × 384 × 10 + 5 2 × 2 ] = 34286966 + 353895752 + 107053344 + 553010 = 495789072 \begin{align} &\{[(224-11+4)/4]^2\times 11^2\times 96 + 224^2\times 2\} + [(26-5+2+1)^2\times 5^2\times 96\times 256 + 26^2\times 2] + \\ &[(12-3+1+1)^2\times 3^2\times 256\times 384 + 12^2\times 2]+[(5-3+1+1)^2\times 3^2\times 384\times 10 + 5^2\times 2]\\ =&34286966+353895752+107053344+553010\\ =&495789072 \end{align} =={[(22411+4)/4]2×112×96+2242×2}+[(265+2+1)2×52×96×256+262×2]+[(123+1+1)2×32×256×384+122×2]+[(53+1+1)2×32×384×10+52×2]34286966+353895752+107053344+553010495789072


(4)一次性直接将 384 × 5 × 5 384\times 5\times 5 384×5×5 的表示压缩为 10 × 5 × 5 10\times 5\times 5 10×5×5 的表示,会存在哪些问题?

压缩太快可能导致特征损失过多。文章来源地址https://www.toymoban.com/news/detail-731645.html

到了这里,关于《动手学深度学习 Pytorch版》 7.3 网络中的网络(NiN)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【AI】《动手学-深度学习-PyTorch版》笔记(十六):自定义网络层、保存/加载参数、使用GPU

    自定义网络层很简单,三步即可完成 继承类:nn.Module 定义初始化函数:__init__中定义需要初始化的代码 定义向前传播函数:forward 1)定义网络层

    2024年02月13日
    浏览(46)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十九):卷积神经网络模型(GoogLeNet、ResNet、DenseNet)

    发布时间:2014年 GoogLeNet的贡献是如何选择合适大小的卷积核,并将不同大小的卷积核组合使用。 之前介绍的网络结构都是串行的,GoogLeNet使用并行的网络块,称为“Inception块” “Inception块”前后进化了四次,论文链接: [1]https://arxiv.org/pdf/1409.4842.pdf [2]https://arxiv.org/pdf/150

    2024年02月12日
    浏览(67)
  • 《动手学深度学习(PyTorch版)》笔记1

    data 每个数据集由一个个样本(example, sample)组成,大多时候,它们遵循独立同分布(independently and identically distributed, i.i.d.)。 样本有时也叫做数据点(data point)或数据实例(data instance),通常每个样本由一组称为特征(features,或协变量(covariates))的属性组成。 机器学习

    2024年01月24日
    浏览(51)
  • 《动手学深度学习(PyTorch版)》笔记2

    让计算机实现微分功能, 有以下四种方式: - 手工计算出微分, 然后编码进代码 - 数值微分 (numerical differentiation) - 符号微分 (symbolic differentiation) - 自动微分(automatic differentiation) 深度学习框架通过 自动微分 来加快求导。 实际中,根据设计好的模型,系统会构建一个 计算

    2024年01月24日
    浏览(46)
  • 《动手学深度学习(PyTorch版)》笔记8.7

    注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,同时对于书上部分章节也做了整合。 通过时间反向传播 (backpropagation thro

    2024年02月20日
    浏览(50)
  • 《动手学深度学习(PyTorch版)》笔记8.6

    注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,同时对于书上部分章节也做了整合。 训练结果: 与上一节相比,由于pytorch的

    2024年02月20日
    浏览(56)
  • 《动手学深度学习(PyTorch版)》笔记3.1

    3.1.1 Basic Concepts 我们通常使用 n n n 来表示数据集中的样本数。对索引为 i i i 的样本,其输入表示为 x ( i ) = [ x 1 ( i ) , x 2 ( i ) , . . . , x n ( i ) ] ⊤ mathbf{x}^{(i)} = [x_1^{(i)}, x_2^{(i)},...,x_n^{(i)}]^top x ( i ) = [ x 1 ( i ) ​ , x 2 ( i ) ​ , ... , x n ( i ) ​ ] ⊤ ,其对应的标签是 y ( i ) y^{(

    2024年01月25日
    浏览(43)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(三):PyTorch常用函数

    返回一维张量(一维数组),官网说明,常见的三种用法如下 tensor.shape:查看张量的形状 tensor.reshape:返回改变形状后的张量,原张量不变

    2024年02月15日
    浏览(50)
  • 动手学深度学习-pytorch版本(二):线性神经网络

    参考引用 动手学深度学习 神经网络的整个训练过程,包括: 定义简单的神经网络架构、数据处理、指定损失函数和如何训练模型 。经典统计学习技术中的 线性回归 和 softmax 回归 可以视为线性神经网络 1.1 线性回归 回归 (regression) 是能为一个或多个自变量与因变量之间关系建

    2024年02月12日
    浏览(51)
  • 动手学深度学习2.3线性代数-笔记&练习(PyTorch)

    以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。 本节课程地址:线性代数_哔哩哔哩_bilibili 本节教材地址:2.3. 线性代数 — 动手学深度学习 2.0.0 documentation (d2l.ai) 本节开源代码:…d2l-zhpytorchchapter_pr

    2024年04月12日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包