什么是神经网络,它的原理是啥?(1)

这篇具有很好参考价值的文章主要介绍了什么是神经网络,它的原理是啥?(1)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

参考:https://www.youtube.com/watch?v=mlk0rddP3L4&list=PLuhqtP7jdD8CftMk831qdE8BlIteSaNzD

视频1: 简单介绍神经网络的基本概念,以及一个训练好的神经网络是怎么使用的

分类算法中,神经网络在训练过程中会学习输入的 pattern,这个 pattern 会被用来区分以后的新输入

神经网络分为如图三层
什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络

输入层的神经元数量等于输入的特征数量

以图像识别为例,下图所需的神经元数量是 2352

什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络

如下图是输出层,我们的图中输出层只有一个神经元,所以只能做二元分类

什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络

隐藏层通常用于保存 “pattern”

通常来说,隐藏层越多,就能用于识别越复杂的图像,做更复杂更精细的分类。但是同样的,隐藏层越多、神经元越多,也会带来更大的存储开销和计算开销。

相邻两层的神经元之间有两两相连的 “边(连接)”。每条边都有权重,这个权重是被我们训练出来的。

权重的用法是:用来做 “加权乘法和(权重和)”,也可以直观的解释下,就说是给每个特征一些权重,如下图

什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络

如上图,通常还会有个 bias

下一个概念:激活函数。通常,一个神经元的输出是激活函数的输出,而这个激活函数的 输入/参数 就是刚刚计算的权重和
什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络
需要注意的是 a21 神经元,以及和它同一层的神经元接下来也会做 权重和,然后继续对 a3? 等等神经元做同样的事情,这样一层一层传递下去,直到最后计算出 output layer

那么接下来的问题是:这些“边”的权重是怎么被计算的?

什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络

如上图,首先给这些边分配随机值,接着进行训练,训练过程会改变权重的值。

关于具体的训练过程,看下个视频。

视频2:大致介绍一些训练神经网络的框架、轮廓,没有深入细节

(谷歌浏览器无障碍字幕挺好用的)

视频里先介绍了计算、讨论神经网络时一些符号的意义

什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络

如上图,说明了,下一层神经元的值,和上一层神经元的值之间的关系,其实可以用一个矩阵计算的公式来表示

这里有一个前提,就是所有神经元(至少同一层)的激活函数都是一样的,那么我们才可以用同一个 f 来计算神经元的值

不同的输入,会激活不同的神经元

使用神经网络的过程中,我们会看到输入层计算权重和传到隐藏层,隐藏层不同的神经元被激活,再计算权重和传到下一个隐藏层… 这个过程就叫做 向前传播

Forward Propagation

向前传播算法如下图

什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络

那么,我们如何训练神经网络,来找到适合的权重矩阵和 bias 呢?

如下图,是 cost 函数,它的意思就是:模型的输出和实际值之间的差。
什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络
“改变 权重矩阵 和 bias,让 cost 函数的输出最小化” 这个就是训练模型的过程

如下图,如果我们可以绘制 cost 和 weight 的关系如下图,这是一个有全局最优的图,那么我们就可以用梯度下降法来优化权重矩阵

alpha 是学习速率,它旁边那个东西是曲线的斜率
什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络
当然了,神经网络中的参数有很多,每两层神经元之间都有一对 权重矩阵 和 bias,所以训练过程如下,我们会计算 cost 函数和不同参数的斜率、求导,随后进行梯度下降法进行优化
什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络
什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络

如上图,在我们优化参数的时候,我们在最小化 cost,cost 取决于 a2,a2取决于 W2 和 a1,a1 取决于 W1 和 a0。这个向后的过程我们就叫做向后传播算法, back propagation

一个整体的训练模型过程如下

什么是神经网络,它的原理是啥?(1),搞明白 CNN 卷积神经网络,神经网络文章来源地址https://www.toymoban.com/news/detail-732864.html

到了这里,关于什么是神经网络,它的原理是啥?(1)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • BP神经网络原理

    BP神经网络(Back Propagation Neural Network)是一种基于误差反向传播算法(Back Propagation Algorithm)的人工神经网络,也是应用最广泛的神经网络之一。它可以用来解决分类、回归、模式识别、数据挖掘等多种问题。 BP神经网络由输入层、隐层和输出层组成,其中隐层可以包含多个

    2024年02月06日
    浏览(54)
  • 神经网络的工作原理

    目录 神经网络的介绍 神经网络的组成 神经网络的工作原理 Numpy 实现神经元 Numpy 实现前向传播 Numpy 实现一个可学习的神经网络 神经网络受人类大脑启发的算法。简单来说,当你睁开眼睛时,你看到的物体叫做数据,再由你大脑中处理数据的 Nuerons(细胞)操作,识别出你所

    2024年02月11日
    浏览(38)
  • 神经网络原理(1)

    眼下最热门的技术,绝对是人工智能。 人工智能的底层模型是\\\"神经网络\\\"(neural network)。许多复杂的应用(比如模式识别、自动控制)和高级模型(比如深度学习)都基于它。学习人工智能,一定是从它开始。 什么是神经网络呢?网上似乎缺乏通俗的解释。 前两天,我读到

    2024年02月11日
    浏览(37)
  • 基于BP神经网络的风险等级预测,BP神经网络的详细原理,

    背影 BP神经网络的原理 BP神经网络的定义 BP神经网络的基本结构 BP神经网络的神经元 BP神经网络的激活函数, BP神经网络的传递函数 代码链接:基于BP神经网络的风险等级评价,基于BP神经网络的风险等级预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download

    2024年02月06日
    浏览(47)
  • [深度学习入门]什么是神经网络?[神经网络的架构、工作、激活函数]

      在大多数资料中,神经网络都被描述成某种 正向传播的矩阵乘法 。而本篇博文 通过将神经网络描述为某种计算单元 ,以一种更加简单易懂的方式介绍神经网络的功能及应用。   广义上讲,神经网络就是要 在输入数据中找寻某种规律 ,就像这个经典的例子: 手写数

    2024年02月17日
    浏览(51)
  • 神经网络基础-神经网络补充概念-29-为什么使用深层表示

    深层表示(Deep Representation)是指在深度神经网络的多个隐藏层中逐层提取和学习数据的特征表示。 高维特征提取:深层神经网络可以从原始数据中自动学习高维抽象特征。每个隐藏层都对数据进行一些变换,逐步提取更高级别的特征。这有助于发现数据中的复杂模式和结构

    2024年02月12日
    浏览(43)
  • 神经网络分类算法原理详解

    目录 神经网络分类算法原理详解 神经网络工作流程 反向传播算法 1) 反向传播原理

    2024年02月12日
    浏览(47)
  • 神经网络基础-神经网络补充概念-55-为什么是ML策略

    “ML策略”(Machine Learning Strategies)是指在解决机器学习问题时,采取的一系列方法、技巧和策略。选择适当的ML策略对于获得高质量的模型和结果非常重要。以下是为什么要考虑ML策略的一些原因: 问题适应性:不同的机器学习问题可能需要不同的策略。ML策略允许您根据问

    2024年02月11日
    浏览(40)
  • 什么是神经网络?

    神经网络,也称为人工神经网络 (ANN) 或模拟神经网络 (SNN),是机器学习的子集,并且是深度学习算法的核心。其名称和结构是受人类大脑的启发,模仿了生物神经元信号相互传递的方式。 一、神经元的组成 每个神经元包含wx+b的运算和一个激活函数组成。 将各个节点想象成

    2024年02月02日
    浏览(34)
  • 什么是卷积神经网络

    目录 什么是卷积神经网络  全链接相对笨重:大胖子​编辑 ​编辑 参数众多:容易造成过拟合 ​编辑 卷积核:进行图像特征提取,源于卷积原理:求相交面积 卷积的作用 卷积的意义 ​编辑 通过卷积核减少参数 深度卷积网络  ReLu函数:负数变成0; ReLu:去除坏习惯​

    2024年02月12日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包