03目标检测-传统方法与深度学习算法对比

这篇具有很好参考价值的文章主要介绍了03目标检测-传统方法与深度学习算法对比。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、目标学习的检测方法变迁及对比    

二、深度学习目标检测算法基本流程

三、传统目标检测算法VS深度学习目标检测算法 


一、目标学习的检测方法变迁及对比    

       “目标检测“是当前计算机视觉和机器学习领域的研究热点。从Viola-Jones Detector、DPM等冷兵器时代的智慧到当今RCNN、YOLO等深度学习土壤孕育下的GPU暴力美学,整个目标检测的发展可谓是计算机视觉领域的一部浓缩史。整个目标检测的发展历程已经总结在了下图中: 
03目标检测-传统方法与深度学习算法对比,人工智能方面,深度学习,目标检测,人工智能

      可以看出,在2012年之前,在目标检测领域还是以传统手工特征的检测算法为主,但是随着卷积神经网络(CNN)在2012年的兴起,目标检测开始了在深度学习下的暴力美学。在深度学习下,目标检测的效果比传统手工特征效果好太多。直至今日,基于深度学习的检测算法依然是目标检测的主流。     

二、深度学习目标检测算法基本流程

03目标检测-传统方法与深度学习算法对比,人工智能方面,深度学习,目标检测,人工智能

流程一:

       给定一张待检测图片,将这张图片作为检测算法的输入,然后对图片采用滑动窗口方式进行进行候选框的提取,然后对每个候选框中的图像进行特征提取(特征的提取主要基于前面的前置知识中介绍方式提取),并用分类器进行特征分类的判定,得到一系列的当前检测目标的候选框,这些候选框可能存在重叠的状况,此时使用非极大值抑制算法NMS对候选框进行合并或过滤,得到的最后的候选框就是最终的检测目标即输出结果。

流程二:
       给定一张图片作为输入,采用特征提取+目标框回归的方法来进行目标区域的提取,最后同样利用NMS进行候选框的合并,最终得到目标输出结果。

注意:

  • 流程一:适用于传统的目标检测方法和基于深度学习的目标检测方法
  • 流程二:适用于基于深度学习的目标检测方法

三、传统目标检测算法VS深度学习目标检测算法 

传统目标检测算法 深度学习目标检测算法
手动设计特征  深度网络学习特征  
滑动窗口 Proposal或者直接回归
传统分类器   深度网络  
多步骤 端到端
准确度和实时性差 准确度高和实时性好

03目标检测-传统方法与深度学习算法对比,人工智能方面,深度学习,目标检测,人工智能

上一篇: 02目标检测-传统检测方法

下一篇:04目标检测-Two-stage的目标检测算法文章来源地址https://www.toymoban.com/news/detail-733067.html

到了这里,关于03目标检测-传统方法与深度学习算法对比的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包