数学建模__动态规划

这篇具有很好参考价值的文章主要介绍了数学建模__动态规划。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

动态规划就是,将任务每一步均记录下来,以便将来重复使用时能够直接调用


问题描述:给定n个物品,每个物品的重量是Wi,价值是Vi,但是背包最多能装下capacity重量的物品,问我们如何选择才能利益最大化。


这里涉及到建模过程,本文章主要讲解代码实现,建模过程较为简略。


使用dp[i][j]来表示在容量为j的情况下,前i件物品的最大化利益。

情况一:放入第i件物品前,发现j<weight[i],因此dp[i][j]此时仍然是dp[i-1][j](也就是dp[i][j]没有发生变化)。
情况二:放入第i件物品时,发现j >= weight[i],此时你放入这件物品与否要看放进去以后利益是如何变化的。
①不放入,那么dp[i][j]的值还是dp[i-1][j]。
②放入,那么dp[i][j]的值是dp[i-1][j-weight[i]]+value[i]。(想一想对不对)

那么具体实现代码如下

import numpy as np


weight = [1,2,5,6,7,9]
value = [1,6,18,22,28,36]

num = 6
capicity = 13


def fun(num, capicity, weight, value):
    #构造一个num+1行,capicity+1列的二维数组
    #便于下标从1开始使用
    dp = np.array([[0]*(capicity+1)]*(num+1))
 

    #dp[i][j]表示第前i件物品在容量为j下的最大价值
    #最终需要知道dp[num][capicity]也就是dp[6][13],在容量为13情况下前6件物品的最大价值是多少。
    #进一步的需要知道dp[][]
    for j in range(1, capicity+1):
        for i in range(1,num+1):
            if j >= weight[i-1]:
                dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i-1]]+value[i-1])
            else:
                dp[i][j] = dp[i-1][j]

    print(dp)

fun(num, capicity, weight, value)

数学建模__动态规划,数学建模,动态规划,算法
核心就在于这个动态转移方程。

d p [ i ] [ j ] = m a x { d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w e i g h t [ i ] ] + v a l u e [ i ] } dp[i][j] = max\{dp[i-1][j],dp[i-1][j-weight[i]]+value[i]\} dp[i][j]=max{dp[i1][j],dp[i1][jweight[i]]+value[i]}

虽写下这篇笔记,但有关动态规划的问题还需多多研究,加深理解。文章来源地址https://www.toymoban.com/news/detail-733502.html

到了这里,关于数学建模__动态规划的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 司守奎《数学建模算法与应用》课后习题:线性规划

    司守奎《数学建模算法与应用》课后习题:线性规划

    1.1、常规求解线性规划 1.2、带有绝对值的线性规划求解 1.3、单下标求解生产利润问题 1.4 、双下标求解利润问题 最后给出一些基础帮助的链接: 需要注意三个问题: 1)分清哪些是列向量,哪些是行向量; 2)如“-2x1+x3”中的x2系数为0,但是不能忽略; 3)MATLAB 默认求最小

    2024年02月05日
    浏览(11)
  • 数学建模笔记——整数规划类问题之我见(匈牙利算法)

    数学建模笔记——整数规划类问题之我见(匈牙利算法)

    目录 浅浅叙述匈牙利算法 基本思路 计算步骤 来一道简单例题 1.1 符号规定 1.2目标函数​编辑       1.3约束条件 ​编辑 1.4代码 题目复述 基本假设 问题分析 符号说明  模型的建立与求解 模型建立思路 模型建立的过程 建立0-1整数规划模型  运用匈牙利方法: 代码实现  

    2023年04月11日
    浏览(27)
  • 数学建模|多目标规划+序贯算法|简要原理+实例matalb代码实现

    数学建模|多目标规划+序贯算法|简要原理+实例matalb代码实现

    (1) 正负偏差变量 【衡量每个目标的完成情况】 设  为第i个目标函数的实际值; 设  表示  的目标值 正偏差变量   【表示实际值 超过 目标值的部分】    负偏差变量 【表示实际值 未达到 目标值的部分】    实例说明: 目标函数实际值 目标值 正偏差变量 负偏差变量

    2024年02月12日
    浏览(10)
  • Matlab数学建模算法详解之混合整数线性规划 (MILP) 算法(附完整实现代码)

    🔗 运行环境:Matlab 🚩 撰写作者:左手の明天 🥇 精选专栏:《python》 🔥  推荐专栏:《算法研究》 ####  防伪水印—— 左手の明天 #### 💗 大家好🤗🤗🤗,我是 左手の明天 !好久不见💗 💗今天分享matlab数学建模算法—— 混合整数线性规划 (MILP) 算法 💗

    2024年02月04日
    浏览(18)
  • 数学建模基础算法Chapter2.1 -- 整数规划(ILP): 分支定界+割平面

    数学建模基础算法Chapter2.1 -- 整数规划(ILP): 分支定界+割平面

    By 进栈需检票 当题目要求的最优解是整数,例如物件的数量,参与人员的数量等时,就不能继续使用之前的线性规划了(当出现小数的情况),这个时候需考虑整数规划这样的一种建模形式 但是目前所流行的求整数规划的方法,只适用于整数线性规划,不能解决一切的整数

    2024年02月12日
    浏览(40)
  • 数学建模6——路径规划的各种算法(Dijkstra、Floyd、A*、D*、RRT*、LPA*)

    数学建模6——路径规划的各种算法(Dijkstra、Floyd、A*、D*、RRT*、LPA*)

    前言:本文只是简单的介绍一下各路径规划算法的概念和流程,可用于对算法的初步了解,如果要进一步学习,可以在 个人理解 中找到我推荐的其他博主更为完善的文章。 目录 一、Dijkstra 基本概念 基本流程 个人理解 MATLAB代码 二、Floyd 基本概念 基本流程 个人理解 MATLAB代

    2024年02月07日
    浏览(7)
  • 数学建模 优化问题——数学规划

    数学建模 优化问题——数学规划

    优化问题 :在一系列客观或主观限制条件下,寻求使所关注的某个或多个指标达到最大(或最小)的决策 结构设计、资源分配、生产计划、运输方案中经常可见 通常的解决手段: 经验积累、主观判断 做试验、比优劣 建立数学模型,求解最优策略 解决优化问题的数学方法: 数

    2024年02月06日
    浏览(39)
  • 【数学建模】-- 数学规划模型

    【数学建模】-- 数学规划模型

    概述: 什么是数学规划? 数学建模中的数学规划是指利用数学方法和技巧对问题进行数学建模,并通过数学规划模型求解最优解的过程。数学规划是一种数学优化方法,旨在找到使目标函数达到最大值或最小值的变量取值,同时满足一系列约束条件。 数学规划包括多种不同

    2024年02月12日
    浏览(7)
  • 数学建模——整数规划(0-1规划)问题

    数学建模——整数规划(0-1规划)问题

    题目:现拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公员。 x招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包

    2023年04月17日
    浏览(12)
  • 数学建模(三)整数规划

    数学建模(三)整数规划

    视频推荐:B站_数学建模老哥 目录 一、整数规划基本原理 1.1 整数规划的分类 1.2 整数规划的特点 1.3 案例 1.4  整数规划的数学模型一般形式 二、整数线性规划的求解方法 2.1 分枝定界法 2.1.1 分枝定界法的求解过程 2.1.2 案例 2.1.3 代码实现 2.2 割平面法 2.2.1 割平面法的基本思

    2024年02月12日
    浏览(9)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包