线性代数的本质(四)——行列式

这篇具有很好参考价值的文章主要介绍了线性代数的本质(四)——行列式。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

行列式

二阶行列式

行列式引自对线性方程组的求解。考虑两个方程的二元线性方程组
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \begin{cases} a_{11}x_1+a_{12}x_2=b_1 \\ a_{21}x_1+a_{22}x_2=b_2 \end{cases} {a11x1+a12x2=b1a21x1+a22x2=b2
可使用消元法,得
( a 11 a 22 − a 12 a 21 ) x 1 = b 1 a 22 − a 12 b 2 ( a 11 a 22 − a 12 a 21 ) x 2 = a 11 b 2 − b 1 a 21 (a_{11}a_{22}-a_{12}a_{21})x_1=b_1a_{22}-a_{12}b_2 \\ (a_{11}a_{22}-a_{12}a_{21})x_2=a_{11}b_2-b_1a_{21} (a11a22a12a21)x1=b1a22a12b2(a11a22a12a21)x2=a11b2b1a21
a 11 a 22 − a 12 a 21 ≠ 0 a_{11}a_{22}-a_{12}a_{21}\neq 0 a11a22a12a21=0 时,得
x 1 = b 1 a 22 − a 12 b 2 a 11 a 22 − a 12 a 21 , x 2 = a 11 b 2 − b 1 a 21 a 11 a 22 − a 12 a 21 x_1=\frac{b_1a_{22}-a_{12}b_2}{a_{11}a_{22}-a_{12}a_{21}},\quad x_2=\frac{a_{11}b_2-b_1a_{21}}{a_{11}a_{22}-a_{12}a_{21}} x1=a11a22a12a21b1a22a12b2,x2=a11a22a12a21a11b2b1a21
从方程组解来看,分母 a 11 a 22 − a 12 a 21 a_{11}a_{22}-a_{12}a_{21} a11a22a12a21 是系数矩阵 A = [ a 11 a 12 a 21 a 22 ] A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} A=[a11a21a12a22] 的元素计算得到,称这个值为矩阵 A A A二阶行列式(determinant),记为 det ⁡ A \det A detA ∣ A ∣ |A| A ,或记为数表形式
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21} a11a21a12a22 =a11a22a12a21
利用二阶行列式的概念,分子也可写为二阶行列式
det ⁡ A 1 = ∣ b 1 a 12 b 2 a 22 ∣ = b 1 a 22 − a 12 b 2 det ⁡ A 2 = ∣ a 11 b 1 a 21 b 2 ∣ = a 11 b 2 − b 1 a 21 \det A_1=\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22}\end{vmatrix}=b_1a_{22}-a_{12}b_2 \\ \det A_2=\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2\end{vmatrix}=a_{11}b_2-b_1a_{21} detA1= b1b2a12a22 =b1a22a12b2detA2= a11a21b1b2 =a11b2b1a21
从上面对比可以看出, x j x_j xj 的矩阵 A j A_j Aj 是系数矩阵 A A A的第 j j j 列用常数项代替后的矩阵。这样,方程组的解可表示为
x 1 = det ⁡ A 1 det ⁡ A , x 2 = det ⁡ A 2 det ⁡ A x_1=\frac{\det A_1}{\det A},\quad x_2=\frac{\det A_2}{\det A} x1=detAdetA1,x2=detAdetA2

n n n 阶行列式

考虑三个方程的三元线性方程组,系数矩阵为
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{bmatrix} A= a11a21a31a12a22a32a13a23a33
用消元法可知未知数的分母同样是系数矩阵 A A A 的元素运算得到,于是定义三阶行列式为
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix} =a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32} -a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31} a11a21a31a12a22a32a13a23a33 =a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31
由二阶行列式的定义,上式可变为
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 12 ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ∣ a 11 a 12 a 21 a 22 ∣ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix}= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33}\end{vmatrix}- a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33}\end{vmatrix}+ a_{13}\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{vmatrix} a11a21a31a12a22a32a13a23a33 =a11 a22a32a23a33 a12 a21a31a23a33 +a13 a11a21a12a22
进一步探索 n n n 元线性方程组,可知高阶行列式定义。为书写方便,把元素 a i j a_{ij} aij 所在的行和列划掉后,剩下的元素组成的行列式称为 a i j a_{ij} aij余子式(cofactor),记作 M i j M_{ij} Mij ,并称
A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij
a i j a_{ij} aij代数余子式(algebraic cofactor)。

定义:方阵 A A A 的行列式用第一行元素的代数余子式定义为
det ⁡ A = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j = 1 n a 1 j A 1 j \det A=\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn} \\ \end{vmatrix}=\sum_{j=1}^na_{1j}A_{1j} detA= a11a21an1a12a22an2a1na2nann =j=1na1jA1j
由定义易知,行列式可以按任意行(列)展开。
det ⁡ A = ∑ j = 1 n a i j A i j , by row  i det ⁡ A = ∑ i = 1 n a i j A i j , by col  j \det A=\sum_{j=1}^na_{ij}A_{ij}, \quad \text{by row }i \\ \det A=\sum_{i=1}^na_{ij}A_{ij}, \quad \text{by col }j detA=j=1naijAij,by row idetA=i=1naijAij,by col j

行列式的性质

性质:使用数学归纳法可知

  1. 行列式与其转置行列式相等: det ⁡ A T = det ⁡ A \det A^T=\det A detAT=detA
  2. 互换行列式两行(列),行列式改变符号。
    ∣ a b c d ∣ = − ∣ c d a b ∣ \begin{vmatrix}a&b\\c&d\end{vmatrix}=-\begin{vmatrix}c&d\\a&b\end{vmatrix} acbd = cadb
  3. 行列式的某一行(列)所有元素同乘以数 k k k,等于数 k k k乘以该行列式。
    ∣ k a b k c d ∣ = k ∣ a b c d ∣ \begin{vmatrix}ka&b\\kc&d\end{vmatrix}=k\begin{vmatrix}a&b\\c&d\end{vmatrix} kakcbd =k acbd
  4. 若行列式的某一行(列)的为两组数之和,则可表示为两行列式之和。
    ∣ a 1 + a 2 b c 1 + c 2 d ∣ = ∣ a 1 b c 1 d ∣ + ∣ a 2 b c 2 d ∣ \begin{vmatrix}a_1+a_2&b\\c_1+c_2&d\end{vmatrix}=\begin{vmatrix}a_1&b\\c_1&d\end{vmatrix}+\begin{vmatrix}a_2&b\\c_2&d\end{vmatrix} a1+a2c1+c2bd = a1c1bd + a2c2bd
  5. 把行列式的某一行(列)所有元素同乘以数 k k k 都加到另一行(列)对应的元素上去,行列式的值不变。
    ∣ a b c d ∣ = ∣ a + k b b c + k d d ∣ \begin{vmatrix}a&b\\c&d\end{vmatrix}=\begin{vmatrix}a+kb&b\\c+kd&d\end{vmatrix} acbd = a+kbc+kdbd
  6. 矩阵乘积的行列式等于行列式的乘积: det ⁡ ( A B ) = ( det ⁡ A ) ( det ⁡ B ) = det ⁡ ( B A ) \det(AB)=(\det A)(\det B)=\det(BA) det(AB)=(detA)(detB)=det(BA)

推论

  1. 行列式中若有两行(列)元素相同,该行列式的值为零。
  2. 行列式中某一行(列)的公因子可以提取到行列式符号外面。
  3. 行列式中若有两行(列)元素成比例,则此行列式等于零。
  4. det ⁡ ( k A ) = k n det ⁡ A \det(kA)=k^n\det A det(kA)=kndetA

由上面的性质,我们很容易得到:

  1. 出现零行和零列的行列式为零。
  2. 对角阵 A = diag ( λ 1 , λ 2 , ⋯   , λ n ) A=\text{diag}(\lambda_1,\lambda_2,\cdots,\lambda_n) A=diag(λ1,λ2,,λn) 的行列式 det ⁡ A = λ 1 λ 2 ⋯ λ n \det A=\lambda_1\lambda_2\cdots\lambda_n detA=λ1λ2λn
  3. 如果 A A A 是三角阵,行列式为主对角线元素的乘积。

对于高阶行列式,一般利用行列式的性质,初等变换化为三角行列式求解。

示例:可用数学归纳法证明范德蒙行列式(Vandermonde determinant):
∣ 1 1 ⋯ 1 a 1 a 2 ⋯ a n a 1 2 a 2 2 ⋯ a n 2 ⋮ ⋮ ⋮ ⋮ a 1 n − 1 a 2 n − 1 ⋯ a n n − 1 ∣ = ∏ 1 ⩽ i < j ⩽ n ( a j − a i ) \begin{vmatrix} 1 & 1& \cdots &1 \\ a_1 &a_2&\cdots &a_n \\ a_1^2 &a_2^2&\cdots &a_n^2 \\ \vdots &\vdots&\vdots &\vdots \\ a_1^{n-1} &a_2^{n-1}&\cdots &a_n^{n-1} \end{vmatrix}=\prod_{1⩽ i<j⩽n}(a_j-a_i) 1a1a12a1n11a2a22a2n11anan2ann1 =1i<jn(ajai)

行列式函数:若 A A A n n n阶矩 阵,可以将 det ⁡ A \det A detA 看作 A A A n n n 个列向量的函数。若 A A A 中除了一列之外都是固定的向量,则 det ⁡ A \det A detA 是线性函数。

假设第 j j j 列是变量,定义映射 x ↦ T ( x ) \mathbf x\mapsto T(\mathbf x) xT(x)
T ( x ) = det ⁡ A = det ⁡ [ a 1 ⋯ x ⋯ a n ] T(\mathbf x)=\det A=\det\begin{bmatrix}\mathbf a_1\cdots\mathbf x\cdots\mathbf a_n\end{bmatrix} T(x)=detA=det[a1xan]
则有
T ( c x ) = c T ( x ) T ( u + v ) = T ( u ) + T ( v ) T(c\mathbf x)=cT(\mathbf x) \\ T(\mathbf u+\mathbf v)=T(\mathbf u)+T(\mathbf v) T(cx)=cT(x)T(u+v)=T(u)+T(v)

克拉默法则

这里只讨论方程个数和未知数相等的 n n n元线性方程组
A x = b A\mathbf x=\mathbf b Ax=b
det ⁡ A ≠ 0 \det A\neq0 detA=0,那么它有唯一解
x j = det ⁡ A j ( b ) det ⁡ A , ( j = 1 , 2 , ⋯   , n ) x_j=\frac{\det A_j(\mathbf b)}{\det A},\quad(j=1,2,\cdots,n) xj=detAdetAj(b),(j=1,2,,n)

约定 A j ( b ) A_j(\mathbf b) Aj(b) 表示用向量 b \mathbf b b 替换矩阵 A A A的第 j j j列。

证:用 a 1 , a 2 , ⋯   , a n \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_n a1,a2,,an 表示矩阵 A A A 的各列, e 1 , e 2 , ⋯   , e n \mathbf e_1,\mathbf e_2,\cdots,\mathbf e_n e1,e2,,en 表示单位阵 I n I_n In 的各列。由分块矩阵乘法
A I j ( x ) = A [ e 1 ⋯ x ⋯ e n ] = [ A e 1 ⋯ A x ⋯ A e n ] = [ a 1 ⋯ b ⋯ a n ] = A j ( b ) \begin{aligned} AI_j(\mathbf x)&=A\begin{bmatrix}\mathbf e_1&\cdots&\mathbf x&\cdots&\mathbf e_n\end{bmatrix} \\ &=\begin{bmatrix}A\mathbf e_1&\cdots& A\mathbf x&\cdots& A\mathbf e_n\end{bmatrix} \\ &=\begin{bmatrix}\mathbf a_1&\cdots&\mathbf b&\cdots&\mathbf a_n\end{bmatrix} \\ &=A_j(\mathbf b) \end{aligned} AIj(x)=A[e1xen]=[Ae1AxAen]=[a1ban]=Aj(b)
由行列式的乘法性质
det ⁡ A det ⁡ I j ( x ) = det ⁡ A j ( b ) \det A\det I_j(\mathbf x)=\det A_j(\mathbf b) detAdetIj(x)=detAj(b)
左边第二个行列式可沿第 j j j 列余子式展开求得 det ⁡ I j ( x ) = x j \det I_j(\mathbf x)=x_j detIj(x)=xj。从而
x j det ⁡ A = det ⁡ A j ( b ) x_j\det A=\det A_j(\mathbf b) xjdetA=detAj(b)
det ⁡ A ≠ 0 \det A\neq0 detA=0,则上式得证。

行列式的几何理解

Grant:行列式告诉你一个线性变换对区域的缩放比例。

我们已经知道,线性变换保持网格线平行且等距。为了方便,我们只考虑在平面直角坐标系内,单位基向量 i , j \mathbf i,\mathbf j i,j 所围成的单位正方形区域的线性变换。

根据向量加法的平行四边形法则和线性变换基本性质知,变换后的区域为矩阵 A = [ a b c d ] A=\begin{bmatrix}a & b\\c & d\end{bmatrix} A=[acbd] 的列向量 [ a c ] \begin{bmatrix}a\\c\end{bmatrix} [ac] [ b d ] \begin{bmatrix}b\\d\end{bmatrix} [bd] 为邻边的平行四边形区域。

结论:二阶行列式的值表示由 A A A 的列确定的有向平行四边形的面积。

(1) 若 A A A 为对角阵,显然行列式 det ⁡ [ a b 0 d ] \det\begin{bmatrix}a & b\\0 & d\end{bmatrix} det[a0bd] 表示底为 a a a,高为 d d d 的平行四边形面积

线性代数的本质(四)——行列式,线性代数,机器学习,矩阵

(2) 更一般的情况 A = [ a b c d ] A=\begin{bmatrix}a & b\\c & d\end{bmatrix} A=[acbd] ,可以看出,行列式的值与面积有着紧密的联系。

线性代数的本质(四)——行列式,线性代数,机器学习,矩阵

(3) 矩阵 [ a 2 a a 1 ] \begin{bmatrix}a^2 & a\\a & 1\end{bmatrix} [a2aa1] 表示将单位正方形压缩成线段,面积自然为0,行列式的值为0

线性代数的本质(四)——行列式,线性代数,机器学习,矩阵

单位正方形区域缩放的比例,其实可以代表任意给定区域缩放的比例。这是因为,线性变换保持网格线平行且等距。对于空间中任意区域的面积,借助微积分的思想,我们可以采用足够的小方格来逼近区域的面积,对所有小方格等比例缩放,则整个区域也以同样的比例缩放。
volume  T ( Ω ) = ( det ⁡ T ) ( volume  Ω ) \text{volume }T(\Omega) = (\det T)(\text{volume }\Omega) volume T(Ω)=(detT)(volume Ω)
线性代数的本质(四)——行列式,线性代数,机器学习,矩阵

通过行列式的几何意义,我们就建立了线性变换、矩阵、行列式之间的关系。不难得出文章来源地址https://www.toymoban.com/news/detail-733517.html

  1. 复合线性变换缩放的比例相当于每次变换缩放比例的乘积,即
    det ⁡ A B = det ⁡ A det ⁡ B \det AB=\det A\det B detAB=detAdetB
  2. 行列式的值为零,表示将空间压缩到更低的维度,矩阵的列向量线性相关

到了这里,关于线性代数的本质(四)——行列式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 线性代数复习:行列式

    线性代数复习:行列式

    求行列式就是求这个行列式的值 二,三阶行列式:可以用:对角线法则和沙路法做 对角线法则: 主对角线和的值减去 副对角线积的和值。 a b c d : 值就是ad-bc 注意:n阶:n行n列. 1.下三角法则(主对角线以上都为0): 把行列式化为下三角行列式值等于主对角线的元素的值的

    2024年02月07日
    浏览(10)
  • 线性代数笔记1-二阶行列式和三阶行列式

    线性代数笔记1-二阶行列式和三阶行列式

    本笔记记录自B站《线性代数》高清教学视频 “惊叹号”系列 宋浩老师第一课 有2行2列,4个元素 ∣ a 11 a 12 a 21 a 22 ∣ begin{vmatrix} a_{11} a_{12}\\\\ a_{21} a_{22} end{vmatrix} ∣ ∣ ​ a 11 ​ a 21 ​ ​ a 12 ​ a 22 ​ ​ ∣ ∣ ​ a i j a_{ij} a ij ​ : i是行标,j是列标 ∣ a 11 a 12 a 21 a 22 ∣

    2023年04月09日
    浏览(11)
  • 线性代数——行列式相关性质

    线性代数——行列式相关性质

    目录 一、行列式与它的转置列行列式相等 二、对换行列式的两行(列),行列式变号  三、行列式某行(列)有公因子k,则k可以提到行列式外 四、行列式中若两行成比例,则行列式为0 五、行列式的某一行(列)的元素都是两数之和,则  六、将行列式的某行(列)元素乘

    2024年01月19日
    浏览(16)
  • 线性代数 第一章 行列式

    一、概念 不同行不同列元素乘积的代数和(共n!项) 二、性质 经转置行列式的值不变,即 ; 某行有公因数k,可把k提到行列式外。特别地,某行元素全为0,则行列式的值为0; 两行互换行列式变号,特别地,两行相等行列式值为0,两行成比例行列式值为0; 某行所有元素都

    2024年02月06日
    浏览(11)
  • 线性代数行列式的几何含义

    线性代数行列式的几何含义

    行列式可以看做是一系列列向量的排列,并且每个列向量的分量可以理解为其对应标准正交基下的坐标。 行列式有非常直观的几何意义,例如: 二维行列式按列向量排列依次是 a mathbf{a} a 和 b mathbf{b} b ,可以表示 a mathbf{a} a 和 b mathbf{b} b 构成的平行四边形的面积 ∣ a b ∣

    2024年02月11日
    浏览(16)
  • 【线性代数】一、行列式和矩阵

    【线性代数】一、行列式和矩阵

    ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| ∣ A B ∣ = ∣ A ∣ ∣ B ∣ 行列互换其值不变, ∣ A T ∣ = ∣ A ∣ |A^T|=|A| ∣ A T ∣ = ∣ A ∣ ∣ A ∗ ∣ = ∣ A ∣ n − 1 ( 由 A A ∗ = ∣ A ∣ E 推 导 而 来 ) |A^*|=|A|^{n-1}(由AA^*=|A|E推导而来) ∣ A ∗ ∣ = ∣ A ∣ n − 1 ( 由 A A ∗ = ∣ A ∣ E 推 导 而

    2024年02月05日
    浏览(13)
  • 线性代数——行列式按行(列)展开

    线性代数——行列式按行(列)展开

    目录 一、余子式:将行列式某元素所在行和列的元素全去掉 剩余部分所构成的行列式,称为该元素的余子式 二、代数余子式 三、行列式等于它的任一行(列)的各元素与对应代数余子式乘积之和  四、行列式某行元素(列)与其他行(列)对应元素的代数余子式相乘,然后

    2024年01月17日
    浏览(28)
  • 【线性代数基础】从面积看行列式

    【线性代数基础】从面积看行列式

    要想探索线性代数的世界,矩阵和行列式是绕不开的。 国内大部分线性代数教材基本都从行列式开始讲起。在初学者眼中,课本上来就是概念输出,讲行列式和矩阵,将一堆数字按照特定的规则进行代数运算,很容易让人一头雾水。 本文将从线代学习者的角度,对线代中的

    2024年02月22日
    浏览(11)
  • 【线性代数】P1 行列式基本概念

    【线性代数】P1 行列式基本概念

    二阶行列式 二阶行列式:两行两列,四个元素,用 a i j a_{ij} a ij ​ 表示,其中 i i i 表示行标, j j j 表示列标。 左上角到右下角为主对角线,左下角到右上角为次对角线; 行列式的值为主对角线上的值相乘减去次对角线相乘的值。 三阶行列式 三阶行列式:三行三列,九个

    2023年04月24日
    浏览(10)
  • 【线性代数】P4 行列式相乘+范德蒙德行列式+克莱姆法则 cramer

    【线性代数】P4 行列式相乘+范德蒙德行列式+克莱姆法则 cramer

    行列式相乘的原则,就是将第一个行列式中依次将每行的每个元素分别与第二个行列式每列的每个元素进行相加再相乘。 其实这样理解:已知两个行列式,如上,相乘有新行列式,新行列式左上角第一个值为: a 11 *b 11 +a 12 *b 21 +a 13 *b 31 实例2: 当然,三阶行列式无法与四阶

    2024年02月02日
    浏览(29)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包