spark集成hudi

这篇具有很好参考价值的文章主要介绍了spark集成hudi。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

启动spark-shell

spark-shell \
> --jars /opt/software/hudi-spark3.1-bundle_2.12-0.12.0.jar \
> --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'\
>   --conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'

spark集成hudi,大数据,spark,hudi,spark,大数据,分布式

2

hudi内置数据生成器,生成10条json数据

scala> :paste
// Entering paste mode (ctrl-D to finish)

import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.hudi.common.model.HoodieRecord

val tableName="hudi_trips_cow"
val basePath ="file:///tmp/hudi_trips_cow"
val dataGen = new DataGenerator

val inserts=convertToStringList(dataGen.generateInserts(10))

spark集成hudi,大数据,spark,hudi,spark,大数据,分布式

3加载到DF,写入hudi,实现简单etl处理

scala> :paste
// Entering paste mode (ctrl-D to finish)

val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
  options(getQuickstartWriteConfigs).
  option(PRECOMBINE_FIELD_OPT_KEY, "ts").
  option(RECORDKEY_FIELD_OPT_KEY, "uuid").
  option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
  option(TABLE_NAME, tableName).
  mode(Overwrite).
  save(basePath)

spark集成hudi,大数据,spark,hudi,spark,大数据,分布式

4读取存储数据及注册临时表

scala> :paste
// Entering paste mode (ctrl-D to finish)

val tripsSnapshotDF = spark.read.format("hudi").load(basePath + "/*/*/*/*")
tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
spark.sql("select fare, begin_lon, begin_lat, ts from  hudi_trips_snapshot where fare > 20.0").show()

spark集成hudi,大数据,spark,hudi,spark,大数据,分布式文章来源地址https://www.toymoban.com/news/detail-733621.html

到了这里,关于spark集成hudi的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Spark大数据分析与实战笔记(第三章 Spark RDD 弹性分布式数据集-02)

    人生很长,不必慌张。你未长大,我要担当。 传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式要进行大量的磁盘IO操作。Spark中的RDD可以很好的解决这一缺点。 RDD是Spark提供的最重要的抽象概念

    2024年02月22日
    浏览(89)
  • 大数据开源框架环境搭建(七)——Spark完全分布式集群的安装部署

    前言:七八九用于Spark的编程实验 大数据开源框架之基于Spark的气象数据处理与分析_木子一个Lee的博客-CSDN博客_spark舆情分析 目录 实验环境: 实验步骤: 一、解压 二、配置环境变量:  三、修改配置文件  1.修改spark-env.sh配置文件: 2.修改配置文件slaves: 3.分发配置文件:

    2024年02月11日
    浏览(49)
  • 云计算与大数据第16章 分布式内存计算平台Spark习题

    1、Spark是Hadoop生态(  B  )组件的替代方案。 A. Hadoop     B. MapReduce        C. Yarn             D.HDFS 2、以下(  D  )不是Spark的主要组件。 A. Driver      B. SparkContext       C. ClusterManager D. ResourceManager 3、Spark中的Executor是(  A  )。 A.执行器      B.主节

    2024年02月14日
    浏览(110)
  • 分布式计算中的大数据处理:Hadoop与Spark的性能优化

    大数据处理是现代计算机科学的一个重要领域,它涉及到处理海量数据的技术和方法。随着互联网的发展,数据的规模不断增长,传统的计算方法已经无法满足需求。因此,分布式计算技术逐渐成为了主流。 Hadoop和Spark是目前最为流行的分布式计算框架之一,它们都提供了高

    2024年01月23日
    浏览(54)
  • 数据存储和分布式计算的实际应用:如何使用Spark和Flink进行数据处理和分析

    作为一名人工智能专家,程序员和软件架构师,我经常涉及到数据处理和分析。在当前大数据和云计算的时代,分布式计算已经成为了一个重要的技术方向。Spark和Flink是当前比较流行的分布式计算框架,它们提供了强大的分布式计算和数据分析功能,为数据处理和分析提供了

    2024年02月16日
    浏览(60)
  • 分布式计算框架:Spark、Dask、Ray 分布式计算哪家强:Spark、Dask、Ray

    目录 什么是分布式计算 分布式计算哪家强:Spark、Dask、Ray 2 选择正确的框架 2.1 Spark 2.2 Dask 2.3 Ray 分布式计算是一种计算方法,和集中式计算是相对的。 随着计算技术的发展, 有些应用需要非常巨大的计算能力才能完成,如果采用集中式计算,需要耗费相当长的时间来完成

    2024年02月11日
    浏览(66)
  • Apache SeaTunnel:新一代高性能、分布式、海量数据集成工具从入门到实践

    Apache SeaTunnel 原名 Waterdrop,在 2021 年 10 月更名为 SeaTunnel 并申请加入 Apache孵化器。目前 Apache SeaTunnel 已发布 40+个版本,并在大量企业生产实践中使用,包括 J.P.Morgan、字节跳动、Stey、中国移动、富士康、腾讯云、国双、中科大数据研究院、360、Shoppe、Bilibili、新浪、搜狗、唯

    2024年02月03日
    浏览(64)
  • Spark单机伪分布式环境搭建、完全分布式环境搭建、Spark-on-yarn模式搭建

    搭建Spark需要先配置好scala环境。三种Spark环境搭建互不关联,都是从零开始搭建。 如果将文章中的配置文件修改内容复制粘贴的话,所有配置文件添加的内容后面的注释记得删除,可能会报错。保险一点删除最好。 上传安装包解压并重命名 rz上传 如果没有安装rz可以使用命

    2024年02月06日
    浏览(77)
  • 【SpringBoot应用篇】SpringBoot集成atomikos实现多数据源配置和分布式事务管理

    讨论分布式事务之前我们分清两个概念: 本地事务 、 分布式事务 ; 本地事务是解决 单个数据源 上的数据操作的 一致性 问题的话,而分布式事务则是为了解决 跨越多个数据源 上数据操作的 一致性 问题。 百度官方对分布式事务的定义是指事务的参与者、支持事务的服务

    2024年02月16日
    浏览(50)
  • 04_Hudi 集成 Spark、保存数据至Hudi、集成Hive查询、MergeInto 语句

    本文来自\\\"黑马程序员\\\"hudi课程 4.第四章 Hudi 集成 Spark 4.1 环境准备 4.1.1 安装MySQL 5.7.31 4.1.2 安装Hive 2.1 4.1.3 安装Zookeeper 3.4.6 4.1.4 安装Kafka 2.4.1 4.2 滴滴运营分析 4.2.1 需求说明 4.2.2 环境准备 4.2.2.1 工具类SparkUtils 4.2.2.2 日期转换星期 4.2.3 数据ETL保存 4.2.3.1 开发步骤 4.2.3.2 加载CS

    2024年02月13日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包