PyTorch深度学习快速入门教程【小土堆】 学习笔记

这篇具有很好参考价值的文章主要介绍了PyTorch深度学习快速入门教程【小土堆】 学习笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

学习视频地址 —— B站

PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】

1 pyTorch安装和配置

彻底卸载anaconda

conda install anaconda-clean
anaconda-clean --yes
再用控制面板

anaconda 卸载环境 :conda uninstall -n yyy --all

  • anaconda 安装路径:D:\anaconda3
  • 创建环境: conda create -n pytorch python=3.9
  • pytorch入门教程,机器学习,pytorch,深度学习,学习
  • 切换环境 : conda activate pytorch
  • 查看目前已经安装的工具包:pip list

Q 安装pytorch?

  1. 进入pytorch首页 下拉,https://pytorch.org/
  2. 查看gpu型号: 任务管理器-性能 - gpu
  3. pytorch入门教程,机器学习,pytorch,深度学习,学习
  4. 首先更改下载源,,然后,使用官网上的指令安装,直接安装torch一直下载不下来

已经测试,速度很慢,30kB/s

 conda create -n pytorch python=3.9
conda activate pytorch

conda config --remove-key channels  
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

版权声明:本文为CSDN博主「StarryHuangx」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_46017950/article/details/123280653

pip3 install torch torchvision torchaudio

已经测试,最有效的办法,速度最快,3MB/s

conda create -n pytorch python=3.9
conda activate pytorch


conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ 


#使用的这个 —— 未成功
conda install pytorch==1.9.1 torchvision==0.10.1 torchaudio==0.9.1 -c pytorch

# 用的这——未成功
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/torch_stable.html


# 这个 未成功
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html

pip install torch==1.10.1+cu102 torchvision==0.11.2+cu102 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu102/torch_stable.html


# 这个可以,但是gpu太low, cuda 版本太高,,gpu上无法训练
pip install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio===0.10.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html  

# 11.1
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/torch_stable.html

pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html

作者:insightya https://www.bilibili.com/read/cv15186754/ 出处:bilibili

2 python 编辑器的安装

pyCharm 安装注意事项

  • 在 Installation Options 中,,勾选 .py

pyCharm 配置

  1. 打开
  2. 新建项目 的过程中
  3. 选择 Existing interpreter
  4. 手动找到编译器,, 选择 conda Environment ->
  5. 输入: D:/anaconda/envs/pytroch/python.exe

检测是否正常运行

  1. 点 “” python console “”
import torch
torch.cuda.is_available()

默认 Jupiter 安装在 base 环境中,,所以,现在 要在 新环境中 在安装一遍 jupiter。

新环境中安装jupyter

# open  anaconda命令行
conda activate pytorch
conda list
conda install nb_conda
jupyter notebook

jupyter 使用指南

import torch
torch.cuda.is_available()

shift + 回车: 表示 创建一个新的代码块,并且运行上一个代码块

3 为什么 返回 false

我的是true ,跳过

4 python 学习中的两个 法宝函数

dir() : 打开
help() : 说明书

dir(pytorch)

5 pyCharm 和 Jupyter使用及对比

pytorch入门教程,机器学习,pytorch,深度学习,学习

6 pytorch 加载数据

Dataset
提供 获取数据及其lable的方法
能得到 总共有 多少数据
能获取 每一个数据 及其 label

Dataloader
把 数据打包,,方便 后续使用

代开 Jupyter

conda activate pytorch
jupyter notebook

7 Dataset 实战

安装opencv

conda activate pytorch
conda install opencv-python
from torch.utils.data import Dataset
from PIL import Image
import os


class MyData(Dataset):

    def __init__(self, root_dir, label_dir):
        self.root_dir = root_dir
        self.label_dir = label_dir
        self.path = os.path.join(self.root_dir, self.label_dir)
        self.img_path = os.listdir(self.path)

    def __getitem__(self, idx):
        img_name = self.img_path[idx]
        img_item_path = os.path.join( self.root_dir, self.label_dir, img_name )
        img = Image.open(img_item_path)
        label = self.label_dir
        return img, label

    def __len__(self):
        return len(self.img_path)

root_dir = "hymenoptera_data/hymenoptera_data/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
ants_dataset = MyData(root_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_label_dir)

train_dataset = ants_dataset + bees_dataset

8 Tensorboard 使用 数据可视化

SummaryWriter使用

  1. 安装tensorboard
pip install tensorboard
  1. 报错
    pytorch入门教程,机器学习,pytorch,深度学习,学习
    包不匹配,解决办法如下
 pip install setuptools==59.5.0
conda install tensorboard

运行结果是,,多了一个Logs文件夹

数据可视化:
一定要切换到Logs的上一层目录中

conda activate pytorch

D:
cd D:\pycharm-workplace\pythonProject

# 切换到 Logs的上一层目录中
tensorboard --logdir=logs

9 tensorboard使用2

利用opencv读取文件,转化为Numpy数组

pip install opencv-python
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
image_path = "hymenoptera_data/hymenoptera_data/train/ants/0013035.jpg"
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)


writer.add_image("lyy", img_array, 1, dataformats='HWC')

for i in range(100):
    writer.add_scalar("y=2x", 3*i, i)

writer.close()

print("end")

10 Transfroms 使用1——主要是对图片进行变换

ToTensor()使用—— 把 imgge 或 numpy 转换为 tensor

from PIL import Image
from torchvision import transforms

img_path = "hymenoptera_data/hymenoptera_data/train/ants/0013035.jpg"
img = Image.open(img_path)

# tensor_trans 是一个类
tensor_trans = transforms.ToTensor() # 吧 imgge 或 numpy 转换为 tensor
tensor_img = tensor_trans(img)

print(tensor_img)

11 Transfroms 使用2——主要是对图片进行变换

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

img_path = "hymenoptera_data/hymenoptera_data/train/ants/0013035.jpg"
img = Image.open(img_path)


writer = SummaryWriter("logs")


tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)

# print(tensor_img)

writer.add_image("lyy", tensor_img)
writer.close()


12 常见transforms使用

normalize

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

img_path = "hymenoptera_data/16.jpg"
img = Image.open(img_path)

writer = SummaryWriter("logs")

# totensor使用
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
writer.add_image("lyy", tensor_img)

# Normalize 使用
trans_norm = transforms.Normalize([111,111,111],[10,10,10])
img_norm = trans_norm(tensor_img)
writer.add_image("normalize", img_norm, 2)

writer.close()

print("end")

13 常见transforms使用2

注意事项

关注输入输出,看官方文档,关注方法的参数
pytorch入门教程,机器学习,pytorch,深度学习,学习

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

img_path = "hymenoptera_data/16.jpg"
img = Image.open(img_path)


writer = SummaryWriter("logs")


# totensor使用
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
writer.add_image("lyy", tensor_img)

# Normalize 使用
trans_norm = transforms.Normalize([111,111,111],[10,10,10])
img_norm = trans_norm(tensor_img)
writer.add_image("normalize", img_norm, 2)

# resize
trans_resize = transforms.Resize( (512, 512))
img_resize = trans_resize(img) # 输入的是Image类型的图像
img_resize_tensor = transforms.ToTensor()

tensor_img = tensor_trans(img_resize)
writer.add_image("resize", tensor_img, 0)

# compose 用法
trans_resize_2 =transforms.Resize(123)
trans_compose = transforms.Compose([trans_resize_2, tensor_trans])
img_resize_2 = trans_compose(img)
writer.add_image("resize2", img_resize_2,1)

# randomCrop
trans_random = transforms.RandomCrop((20,50))
trans_compose_2 = transforms.Compose([trans_random, tensor_trans])
for i in range(10):
    img_crop = trans_compose_2(img)
    writer.add_image("randomCrop", img_crop, i)


writer.close()

print("end")

14 torchvision数据集使用

下载网上的数据集,及使用

import torchvision
from torch.utils.tensorboard import SummaryWriter

dataset_transfrom = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])

train_set = torchvision.datasets.CIFAR10(root="./cifar10", train=True, transform=dataset_transfrom, download=True)
test_set = torchvision.datasets.CIFAR10(root="./cifar10", train=False, transform=dataset_transfrom, download=True)

writer = SummaryWriter("p10")
for i in range(10):
    img, target = test_set[i]
    writer.add_image("test_set", img, i)

writer.close()

DataLoader 使用

Dataset 有数据,和标签
DataLoader,吧数据 加载 到神经网络

import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_data = torchvision.datasets.CIFAR10("./cifar10", train=False, transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)

writer = SummaryWriter("dataloader")

step = 0
for data in test_loader:
    imgs, targets = data
    writer.add_images("dataloader", imgs, step)
    step = step + 1

writer.close()\

17 卷积操作

import torch
import torch.nn.functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])
kernal = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

input = torch.reshape(input, (1,1,5,5))
kernal = torch.reshape(kernal, (1,1,3,3))

print(input.shape)
print(kernal.shape)

output = F.conv2d(input, kernal, stride=2, padding=1)
print(output)

18 神经网络 —— 卷积层

import torch
import torchvision
from torch.utils.data import DataLoader
from torch.nn import Conv2d
from torch import nn
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./cifar10",train=False,transform=torchvision.transforms.ToTensor(), download=False)
dataloader = DataLoader(dataset, batch_size=64)

class Lyy(nn.Module):
    def __init__(self):
        super(Lyy, self).__init__()
        self.conv1 = Conv2d(3, 6, 3, 1)

    def forward(self, x):
        x = self.conv1(x)
        return x

lyy = Lyy()

writer = SummaryWriter("logs")
step = 0
for data in dataloader:
    imgs, targets = data
    output = lyy(imgs)
    writer.add_images("input", imgs, step)

    output = torch.reshape(output, (-1,3,30,30))
    writer.add_images("output", output, step)

    step += 1

19 最大池化层

移动步长,默认是 卷积核的大小

import torch
from torch.nn import Conv2d, MaxPool2d
from torch import nn
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10('./cifar10', train=False, transform=torchvision.transforms.ToTensor(),download=False)
dataloader = DataLoader(dataset, 64, False)


input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]], dtype=torch.float32)
kernal = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

input = torch.reshape(input, (1,1,5,5))
# kernal = torch.reshape(kernal, (1,1,3,3))

class Lyy(nn.Module):
    def __init__(self):
        super(Lyy, self).__init__()
         # self.conv1 = Conv2d(3, 3, 3, 1,padding=1)
        self.maxpool =MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, x):
        # x = self.conv1(x)
        x = self.maxpool(x)
        return x

lyy = Lyy()
# output = lyy(input)

writer = SummaryWriter("logs")
step = 0
for data in dataloader:
    imgs, tagerts = data
    writer.add_images("input", imgs, step)
    output = lyy(imgs)
    writer.add_images("output", output, step)
    step += 1

writer.close()

20 非线性激活

import torch
import torchvision.datasets
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]], dtype=torch.float32)

input = torch.reshape(input, (-1,1, 5, 5))


dataset = torchvision.datasets.CIFAR10("./cifar10", False, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, 64)


class Lyy(nn.Module):
    def __init__(self):
        super(Lyy, self).__init__()
        self.relu1 = ReLU()
        self.sigmoid = Sigmoid()

    def forward(self, input):
        return self.sigmoid(input)

lyy = Lyy()


step = 0
writer = SummaryWriter("logs")

for data in dataloader:
    imgs, targets = data
    writer.add_images("input", imgs, step)
    output = lyy(imgs)
    writer.add_images("output", output, step)
    step += 1

writer.close()

print("end")

21 线性层 和 其它层

为正确运行

import torch
import torchvision
from torch.nn import Linear
from torch.utils.data import DataLoader
from torch import nn
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10('./cifar10', False, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)


class Lyy(nn.Module):
    def __init__(self):
        super(Lyy, self).__init__()
        super.linear1 = Linear(196608,10)

    def forward(self, input):
        output = self.linear1(input)
        return output

lyy = Lyy()

write = SummaryWriter("logs")

step = 0
for data in dataloader:
    imgs, targers = data
    print(imgs.shape)
    write.add_images("input", imgs, step)
    output = torch.reshape(imgs, (1,1,1, -1))
    print(output.shape)

    write.add_images("output", output, step)
write.close()

22 神经网络搭建小实战

计算 Padding 和 Stride 是多少?

Dilation 默认等于 1
pytorch入门教程,机器学习,pytorch,深度学习,学习
pytorch入门教程,机器学习,pytorch,深度学习,学习

RuntimeError: mat1 and mat2 shapes cannot be multiplied (64x1024 and 10240x64) 原因

pytorch入门教程,机器学习,pytorch,深度学习,学习
原因: 网络参数设置不合适!!

from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
import torch

class Lyy(nn.Module):
    def __init__(self):
        super(Lyy, self).__init__()
        self.conv1 = Conv2d(3, 32, 5, padding=2)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(32, 32, 5, padding=2)
        self.maxpool2 = MaxPool2d(2)
        self.conv3 = Conv2d(32, 64, 5, padding=2)
        self.maxpool3 = MaxPool2d(2)
        self.flatten = Flatten()
        self.linear1 = Linear(1024, 64)
        self.linear2 = Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x

lyy = Lyy()
input = torch.ones((64,3,32,32))
print(input.shape)
output = lyy(input)
print(output.shape)

上述代码的,等价替换版本

from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
import torch

class Lyy(nn.Module):
    def __init__(self):
        super(Lyy, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x

lyy = Lyy()
input = torch.ones((64,3,32,32))
print(input.shape)
output = lyy(input)
print(output.shape)

可以用tensorboard绘制流程图

writer = SummaryWriter('logs')
writer.add_graph(lyy, input)
writer.close()

23 损失函数与反向传播

分类问题经常用 交叉熵损失函数

import torch
from torch.nn import L1Loss
from torch import nn

inputs = torch.tensor([1,2,3], dtype=float)
outputs = torch.tensor([1,2,5], dtype=float)

inputs = torch.reshape(inputs, [1,1,1,3])
outputs = torch.reshape(outputs, (1,1,1,3))

loss = L1Loss(reduction='sum')
result = loss(inputs, outputs)
print(result)


loss_mse = nn.MSELoss()
result = loss_mse(inputs, outputs)
print(result)


# 交叉熵损失函数
x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = nn.CrossEntropyLoss()
print(loss_cross)
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10('./cifar10', False, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)

class Lyy(nn.Module):
    def __init__(self):
        super(Lyy, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
lyy=Lyy()
for data in dataloader:
    imgs, targets = data
    outputs = lyy(imgs)
    result_loss = loss(outputs, targets)
    result_loss.backward()
    print(result_loss)

24 优化器

import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
import torch


dataset = torchvision.datasets.CIFAR10('./cifar10', False, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)


class Lyy(nn.Module):
    def __init__(self):
        super(Lyy, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
lyy=Lyy()
optis = torch.optim.SGD(lyy.parameters(), lr=0.1)

for epoch in range(10):
    running_loss = 0
    for data in dataloader:
        imgs, targets = data
        outputs = lyy(imgs)
        result_loss = loss(outputs, targets)

        optis.zero_grad()
        result_loss.backward() # 设置对应的梯度
        optis.step()
        running_loss += result_loss
    print(running_loss)


25 现有网络模型的使用及修改

AGG模型 + imageNet数据集

1. 安装 scipy包

2. pretrained参数,表示,网络是否训练好

import torchvision.models
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
import torch

dataset = torchvision.datasets.CIFAR10('./cifar10', False, transform=torchvision.transforms.ToTensor())
#dataloader = DataLoader(dataset, batch_size=64)

vgg16_true = torchvision.models.vgg16(pretrained=True)
vgg16_false = torchvision.models.vgg16(pretrained=False)
# 改造vgg16

print(vgg16_false)
# 更改 vgg16, 增加一层
vgg16_true.classifier.add_module('add_linear', nn.Linear(1000, 10))
print(vgg16_true)

print(vgg16_false)
vgg16_false.classifier[6] = nn.Linear(4096, 10)
print(vgg16_false)

26 网络模型的保存与读取

方式1 和 方式2 都差不多,推荐 方式2

model_save

import torchvision
import torch

vgg16 = torchvision.models.vgg16(pretrained=False)

# 保存方式1 : 即保存模型结构,,也保存了参数
torch.save(vgg16, "vgg16_model1.pth")

# 保存方式2 : 把参数保存成字典,不保存结构 (官方推荐)
torch.save(vgg16.state_dict(), "vgg16_model2.pth")

print("end")

model_load

import torch
import torchvision

# 加载方式1 - 保存方式1
# model = torch.load("vgg16_model1.pth")
# # print(model)


# 加载方式2
vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("vgg16_model2.pth"))
print(vgg16)

27,28,29 完整的训练 套路

argmax() 针对分类问题很有效

pytorch入门教程,机器学习,pytorch,深度学习,学习

import torch
from torch.utils.tensorboard import SummaryWriter

from model_self import *
import torchvision
from torch.nn import Conv2d
from torch.optim import SGD
from torch.utils.data import DataLoader
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear

# 准备数据及
train_data = torchvision.datasets.CIFAR10('./cifar10', True, transform=torchvision.transforms.ToTensor(),download=False)
test_data = torchvision.datasets.CIFAR10('./cifar10', False, transform=torchvision.transforms.ToTensor(),download=False)


# 求长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据及长度:{}".format(train_data_size))
print("测试数据集长度:{}".format(test_data_size))

# 加载数据及
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


# 搭建网络


# 创建网络模型
lyy = Lyy()

# 创建损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(lyy.parameters(),lr=learning_rate)


# 设置训练网络参数
total_train_step = 0
total_test_step = 0
epoch = 10


# 添加tensorboard
writer = SummaryWriter("logs")


for i in range(epoch):
    print("-----第{}轮训练开始了-----".format(i+1))

    # 训练步骤开始
    for data in train_dataloader:
        imgs, tragets = data
        output = lyy(imgs)
        loss = loss_fn(output, tragets)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    total_test_loss = 0
    total_accuracy = 0

    with torch.no_grad():
        for data in test_dataloader:
            imgs, tragets = data
            output = lyy(imgs)
            loss = loss_fn(output, tragets)
            total_test_loss += loss

            accuracy = (output.argmax(1) -- tragets).sum()
            total_accuracy += accuracy

    print("整体测试机上误差:{}".format(total_test_loss))
    print("整体测试机上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/total_test_step)
    total_test_step += 1

    # torch.save(lyy, "lyy_{}.pth".format(i))
    # print("模型已保存")

writer.close()

30 利用GPU训练

找到 网络模型, 数据, 损失函数,调用.cuda()文章来源地址https://www.toymoban.com/news/detail-733858.html

到了这里,关于PyTorch深度学习快速入门教程【小土堆】 学习笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pytorch DistributedDataParallel(DDP)教程一:快速入门理论篇

    一、 写在前面 随着深度学习技术的不断发展,模型的训练成本也越来越高。训练一个高效的通用模型,需要大量的训练数据和算力。在很多非大模型相关的常规任务上,往往也需要使用多卡来进行并行训练。在多卡训练中,最为常用的就是分布式数据并行(DistributedDataPara

    2024年04月15日
    浏览(38)
  • pytorch中分布式训练DDP教程(新手快速入门!)

    PyTorch是深度学习领域广泛使用的开源深度学习框架之一。随着深度学习模型的不断增大和数据集的不断增长,单机训练往往不能满足我们的需求。为了加速训练过程,我们可以使用分布式训练技术。在PyTorch中,分布式数据并行(Distributed Data Parallel,简称DDP)是一种常见的分

    2024年02月16日
    浏览(45)
  • Pytorch DistributedDataParallel(DDP)教程二:快速入门实践篇

    一、简要回顾DDP 在上一篇文章中,简单介绍了Pytorch分布式训练的一些基础原理和基本概念。简要回顾如下: 1,DDP采用Ring-All-Reduce架构,其核心思想为:所有的GPU设备安排在一个逻辑环中,每个GPU应该有一个左邻和一个右邻,设备从它的左邻居接收数据,并将数据汇总后发送

    2024年04月15日
    浏览(43)
  • Docker 快速上手学习入门教程

    目录 1、docker 的基础概念 2、怎样打包和运行一个应用程序? 3、如何对 docker 中的应用程序进行修改? 4、如何对创建的镜像进行共享? 5、如何使用 volumes 名称对容器中的数据进行存储?// 数据挂载 6、另一种挂载方式:目录挂载 7、实现容器之间的相互通信 8、使用 Docker

    2024年02月09日
    浏览(41)
  • 图像分类保姆级教程-深度学习入门教程(附代码)

    图像分类是计算机视觉领域中的一个重要任务。它的目的是将输入的图像归类到预定义的类别中。这个任务在过去被认为是非常具有挑战性的,因为图像的特征非常复杂,而且存在很多种不同的变化方式,例如光照、角度、遮挡等等。 然而,随着深度学习的发展,图像分类问

    2024年01月22日
    浏览(56)
  • 【深度学习】pytorch——快速入门

    笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ PyTorch是一个开源的机器学习框架,它提供了丰富的工具和库,用于构建和训练深度学习模型。下面是一些关于PyTorch的基本信息: 张量(Tensor)操作 :PyTorch中的核心对象是张量,它是一个多维数组。PyTorch提供了广泛的

    2024年02月06日
    浏览(43)
  • 【Redis学习笔记01】快速入门(含安装教程)

    先来看门见山的给出 Redis 的概念: Redis:是一种基于内存的高性能K-V键值型NoSQL数据库 Redis官网:https://redis.io/ 1.1 初识NoSQL 想必大家都对关系型数据库更为熟悉!如MySQL、Oracle、SQL Server都是比较常见的关系型数据库,所谓关系型数据库主要以二维表作为数据结构进行存储,但

    2024年01月22日
    浏览(46)
  • Google Earth Engine(GEE)深度学习入门教程- GEE导出篇

    官方教程:TFRecord 和地球引擎 在GEE的JS Code Editor中,我们按照我们的需要去处理对应的遥感影像,得到处理后Image影像。为了导出后读取数据,在导出前 一定清楚每个波段的名称(不然没法读取) 。深度学习数据集所需数据以为patch为单位,所以需要对整个遥感影像进行裁剪

    2024年02月03日
    浏览(51)
  • 【我是土堆 - PyTorch教程】学习随手记(已更新 | 已完结 | 10w字超详细版)

    目录 1. Pytorch环境的配置及安装 如何管理项目环境? 如何看自己电脑cuda版本? 安装Pytorch  2. Python编辑器的选择、安装及配置 PyCharm  PyCharm神器 Jupyter(可交互)  3. Python学习中的两大法宝函数 说明  实战操作 总结 4. Pycharm及Jupyter使用及对比 如何在PyCharm中新建项目? Pyth

    2024年01月21日
    浏览(68)
  • PyTorch教程——小土堆笔记

    跟着B站小土堆PyTorch教程写的代码笔记 完整代码: 链接:https://pan.baidu.com/s/1-ZePujIeVjeZeCdq7Xek0Q 提取码:4vse Tensorboard是一个可视化工具,能够可视化神经网络内部的组织、结构、及其训练过程。 Transforms是pytorch的图像处理工具包,是torchvision模块下的一个一个类的集合,可以对

    2024年02月07日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包