Pytorch L1,L2正则化

这篇具有很好参考价值的文章主要介绍了Pytorch L1,L2正则化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

L1正则化和L2正则化是常用的正则化技术,用于在机器学习模型中控制过拟合。它们的主要区别在于正则化项的形式和对模型参数的影响。

L1正则化(Lasso正则化):

  • 正则化项形式:L1正则化使用模型参数的绝对值之和作为正则化项,即L1范数。
  • 影响模型参数:L1正则化倾向于将一些模型参数压缩为0,从而实现特征选择和稀疏性。因此,它可以用于特征选择和模型简化。
  • 其他特点:由于L1正则化的非光滑性,优化问题在参数接近零时更容易找到解,因此它对于具有大量无关特征的问题更有效。

L2正则化(Ridge正则化):

  • 正则化项形式:L2正则化使用模型参数的平方和作为正则化项,即L2范数。
  • 影响模型参数:L2正则化倾向于使模型参数趋向于较小的值,但不会将其完全压缩为零。它通过减小模型参数的绝对值来控制参数的大小。
  • 其他特点:L2正则化是光滑的,优化问题在参数接近零时相对平滑,因此对于许多问题都能得到较好的结果。

总结:

  • L1正则化倾向于稀疏性和特征选择,适用于具有大量无关特征的问题。
  • L2正则化倾向于模型参数较小,适用于控制模型复杂度和减少过拟合。
  • 在某些情况下,可以同时使用L1和L2正则化形成弹性网络(Elastic Net),综合了两者的优点。

选择使用L1正则化还是L2正则化取决于具体问题和数据集的特点。通常建议先尝试L2正则化,如果模型仍然过拟合或需要进行特征选择,则可以考虑使用L1正则化。

对L1产生稀疏权值和L2产生平滑权值的理解

L1的定义是L1 = |w1| + |w2| + |w3| + ... + |wn|

L2的定义是L2 = w1^2 + w2^2 + w3^2 + ... + wn^2

L1和L2分别对w求导可得

dL1/dw = sign(wi)

dL2/dw = wi

假设wi为某个大于零的浮点数,学习率lr为0.5,根据梯度下降算法,

L1的权值更新方式为wi = wi - lr*(dL1/dw) = wi - lr*1 = wi - 0.5

L2的权值更新方式为wi = wi - lr*(dL2/dw) = wi - lr*wi = wi - 0.5wi

可以看出,L1每次更新都是减去一个固定的值,那就可能在多次迭代之后,权值为0的情况

而L2虽然权值也在减小,但是总不为0

需要注意的是,通常情况下,我们更倾向于对权值进行正则化,而不是对偏置进行正则化的原因有以下几点:

  1. 偏置的作用:偏置(bias)是模型中的一个常数项,它的作用是调整模型预测值与实际值之间的偏差。偏置通常用来解决模型在数据特征上的平移问题,而不会引入过多的复杂性。由于偏置只是一个常数,它的取值并不像权值那样会随着训练过程而变化,因此对偏置进行正则化对于控制模型的复杂度影响较小。

  2. 影响模型容量:正则化的目的是通过限制参数的取值范围来控制模型的复杂度,避免过拟合。权值在模型中起到了控制特征的重要作用,对权值进行正则化可以有效地减少模型的复杂度,提高泛化能力。而偏置的作用相对较小,对偏置进行正则化往往对模型的泛化能力影响较小。

  3. 数据中的偏移:在实际的数据中,通常会存在一些偏移(bias),即使我们对权值不进行正则化,模型也可以通过调整偏置来适应这种偏移。因此,对偏置进行正则化可能会导致对数据中的偏移进行过度拟合,而忽略了模型对其他特征的学习能力。

测试代码如下

import torch
import matplotlib.pyplot as plt

torch.manual_seed(25)

x_train = torch.tensor([1,2,3,4,5,6,7,8,9,10],dtype=torch.float32).unsqueeze(-1)
y_train = torch.tensor([0.52,8.54,6.94,20.76,32.17,30.65,40.46,80.12,75.12,98.83],dtype=torch.float32).unsqueeze(-1)
plt.scatter(x_train.detach().numpy(),y_train.detach().numpy(),marker='o',s=50,c='r')

class Linear(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.layers = torch.nn.Sequential(
            torch.nn.Linear(in_features=1, out_features=3),
            torch.nn.Sigmoid(),
            torch.nn.Linear(in_features=3,out_features=5),
            torch.nn.Sigmoid(),
            torch.nn.Linear(in_features=5, out_features=10),
            torch.nn.Sigmoid(),
            torch.nn.Linear(in_features=10,out_features=5),
            torch.nn.Sigmoid(),
            torch.nn.Linear(in_features=5, out_features=1),
            torch.nn.ReLU(),
        )

    def forward(self,x):
        return self.layers(x)

linear = Linear()

opt = torch.optim.Adam(linear.parameters(),lr= 0.005)
loss_fn = torch.nn.MSELoss()


for epoch in range(1000):
    for iter in range(10):
        L1 = 0
        L2 = 0
        for name,param in linear.named_parameters():
            if 'bias' not in name:
                L1 += torch.norm(param, p=1) * 1e-3
                L2 += torch.norm(param, p=2) * 1e-3

        opt.zero_grad()
        output = linear(x_train[iter])
        loss = loss_fn(output, y_train[iter]) + L1 + L2
        loss.backward()
        opt.step()


if __name__ == '__main__':
    predict_loss = 0
    for i in range(1000):
        x = torch.tensor([i/100], dtype=torch.float32)
        y_predict = linear(x)
        plt.scatter(x.detach().numpy(),y_predict.detach().numpy(),s=2,c='b')
        plt.scatter(i/100,i*i/10000,s=2,c='y')
        predict_loss = (i*i/10000 - y_predict)**2/(y_predict)**2 + predict_loss
plt.show()

不使用L1,L2正则化的情况如下

Pytorch L1,L2正则化,Pytorch,pytorch,人工智能,python,深度学习

只使用L1正则化的情况如下Pytorch L1,L2正则化,Pytorch,pytorch,人工智能,python,深度学习

只使用L2正则化的情况如下

Pytorch L1,L2正则化,Pytorch,pytorch,人工智能,python,深度学习

同时使用L1和L2正则化的情况如下

Pytorch L1,L2正则化,Pytorch,pytorch,人工智能,python,深度学习文章来源地址https://www.toymoban.com/news/detail-733912.html

到了这里,关于Pytorch L1,L2正则化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能学习07--pytorch14--ResNet网络/BN/迁移学习详解+pytorch搭建

    亮点:网络结构特别深 (突变点是因为学习率除0.1?) 梯度消失 :假设每一层的误差梯度是一个小于1的数,则在反向传播过程中,每向前传播一层,都要乘以一个小于1的误差梯度。当网络越来越深的时候,相乘的这些小于1的系数越多,就越趋近于0,这样梯度就会越来越小

    2023年04月11日
    浏览(159)
  • 人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型

    大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型,在本文中,我们将学习如何使用PyTorch搭建卷积神经网络ResNet模型,并在生成的假数据上进行训练和测试。本文将涵盖这些内容:ResNet模型简介、ResNet模型结构、生成假

    2024年02月06日
    浏览(78)
  • 人工智能(pytorch)搭建模型10-pytorch搭建脉冲神经网络(SNN)实现及应用

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型10-pytorch搭建脉冲神经网络(SNN)实现及应用,脉冲神经网络(SNN)是一种基于生物神经系统的神经网络模型,它通过模拟神经元之间的电信号传递来实现信息处理。与传统的人工神经网络(ANN)不同,SNN 中的

    2024年02月08日
    浏览(50)
  • 人工智能(pytorch)搭建模型17-pytorch搭建ReitnNet模型,加载数据进行模型训练与预测

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型17-pytorch搭建ReitnNet模型,加载数据进行模型训练与预测,RetinaNet 是一种用于目标检测任务的深度学习模型,旨在解决目标检测中存在的困难样本和不平衡类别问题。它是基于单阶段检测器的一种改进方法,通

    2024年02月15日
    浏览(96)
  • 人工智能:Pytorch,TensorFlow,MXNET,PaddlePaddle 啥区别?

    学习人工智能的时候碰到各种深度神经网络框架:pytorch,TensorFlow,MXNET,PaddlePaddle,他们有什么区别? PyTorch、TensorFlow、MXNet和PaddlePaddle都是深度学习领域的开源框架,它们各自具有不同的特点和优势。以下是它们之间的主要区别: PyTorch是一个开源的Python机器学习库,它基

    2024年04月16日
    浏览(69)
  • AI写作革命:PyTorch如何助力人工智能走向深度创新

    身为专注于人工智能研究的学者,我十分热衷于分析\\\"AI写稿\\\"与\\\"PyTorch\\\"这两项领先技术。面对日益精进的人工智能科技,\\\"AI写作\\\"已不再是天方夜谭;而\\\"PyTorch\\\"如璀璨明珠般耀眼,作为深度学习领域的尖端工具,正有力地推进着人工智能化进程。于此篇文章中,我将详细解析\\\"

    2024年04月13日
    浏览(57)
  • 人工智能(Pytorch)搭建模型2-LSTM网络实现简单案例

     本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052  大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型2-LSTM网络实现简单案例。主要分类三个方面进行描述:Pytorch搭建神经网络的简单步骤、LSTM网络介绍、Pytorch搭建LSTM网络的代码实战 目录

    2024年02月03日
    浏览(66)
  • 人工智能(pytorch)搭建模型12-pytorch搭建BiGRU模型,利用正态分布数据训练该模型

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型12-pytorch搭建BiGRU模型,利用正态分布数据训练该模型。本文将介绍一种基于PyTorch的BiGRU模型应用项目。我们将首先解释BiGRU模型的原理,然后使用PyTorch搭建模型,并提供模型代码和数据样例。接下来,我们将

    2024年02月09日
    浏览(68)
  • 人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测。孪生网络是一种用于度量学习(Metric Learning)和比较学习(Comparison Learning)的深度神经网络模型。它主要用于学习将两个输入样本映射到一个

    2024年02月11日
    浏览(143)
  • 人工智能(pytorch)搭建模型8-利用pytorch搭建一个BiLSTM+CRF模型,实现简单的命名实体识别

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型8-利用pytorch搭建一个BiLSTM+CRF模型,实现简单的命名实体识别,BiLSTM+CRF 模型是一种常用的序列标注算法,可用于词性标注、分词、命名实体识别等任务。本文利用pytorch搭建一个BiLSTM+CRF模型,并给出数据样例,

    2024年02月09日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包