introduction
介绍如何自定义量化优化过程,以及如何手动调用优化过程文章来源地址https://www.toymoban.com/news/detail-733916.html
code
from typing import Callable, Iterable
import torch
import torchvision
from ppq import (BaseGraph, QuantizationOptimizationPass,
QuantizationOptimizationPipeline, QuantizationSetting,
TargetPlatform, TorchExecutor)
from ppq.api import ENABLE_CUDA_KERNEL
from ppq.executor.torch import TorchExecutor
from ppq.IR.quantize import QuantableOperation
from ppq.IR.search import SearchableGraph
from ppq.quantization.optim import (ParameterQuantizePass,
PassiveParameterQuantizePass,
QuantAlignmentPass, QuantizeRefinePass,
QuantizeSimplifyPass,
RuntimeCalibrationPass)
from ppq.quantization.quantizer import TensorRTQuantizer
# ------------------------------------------------------------
# 在这个例子中,我们将向你介绍如何自定义量化优化过程,以及如何手动调用优化过程
# ------------------------------------------------------------
BATCHSIZE = 32
INPUT_SHAPE = [BATCHSIZE, 3, 224, 224]
DEVICE = 'cuda'
PLATFORM = TargetPlatform.TRT_INT8
# ------------------------------------------------------------
# 和往常一样,我们要创建 calibration 数据,以及加载模型
# ------------------------------------------------------------
def load_calibration_dataset() -> Iterable:
return [torch.rand(size=INPUT_SHAPE) for _ in range(32)]
CALIBRATION = load_calibration_dataset()
def collate_fn(batch: torch.Tensor) -> torch.Tensor:
return batch.to(DEVICE)
model = torchvision.models.mobilenet.mobilenet_v2(pretrained=True)
model = model.to(DEVICE)
# ------------------------------------------------------------
# 下面,我们将向你展示如何自定义图融合过程
# 图融合过程将改变量化方案,PPQ 使用 Tensor Quantization Config
# 来描述图融合的具体规则,其底层由并查集进行实现
# ------------------------------------------------------------
# ------------------------------------------------------------
# 定义我们自己的图融合过程,在这里我们将尝试进行 Conv - Clip 的融合
# 但与平常不同的是,我们将关闭 Clip 之后的量化点,保留 Conv - Clip 中间的量化
# 对于更为复杂的模式匹配,你可以参考 ppq.quantization.optim.refine.SwishFusionPass
# ------------------------------------------------------------
class MyFusion(QuantizationOptimizationPass):
def optimize(self, graph: BaseGraph, dataloader: Iterable,
collate_fn: Callable, executor: TorchExecutor, **kwargs) -> None:
# 图融合过程往往由图模式匹配开始,让我们建立一个模式匹配引擎
search_engine = SearchableGraph(graph=graph)
for pattern in search_engine.pattern_matching(patterns=['Conv', 'Clip'], edges=[[0, 1]], exclusive=True):
conv, relu = pattern
# 匹配到图中的 conv - relu 对,接下来关闭不必要的量化点
# 首先我们检查 conv - relu 是否都是量化算子,是否处于同一平台
is_quantable = isinstance(conv, QuantableOperation) and isinstance(relu, QuantableOperation)
is_same_plat = conv.platform == relu.platform
if is_quantable and is_same_plat:
# 将 relu 输入输出的量化全部指向 conv 输出
# 一旦调用 dominated_by 完成赋值,则调用 dominated_by 的同时
# PPQ 会将 relu.input_quant_config[0] 与 relu.output_quant_config[0] 的状态置为 OVERLAPPED
# 在后续运算中,它们所对应的量化不再起作用
relu.input_quant_config[0].dominated_by = conv.output_quant_config[0]
relu.output_quant_config[0].dominated_by = conv.output_quant_config[0]
# ------------------------------------------------------------
# 自定义图融合的过程将会干预量化器逻辑,我们需要新建量化器
# 此处我们继承 TensorRT Quantizer,算子的量化逻辑将使用 TensorRT 的配置
# 但在生成量化管线时,我们将覆盖量化器原有的逻辑,使用我们自定义的管线
# 这样我们就可以把自定义的图融合过程放置在合适的位置上,而此时 QuantizationSetting 也不再起作用
# ------------------------------------------------------------
class MyQuantizer(TensorRTQuantizer):
def build_quant_pipeline(self, setting: QuantizationSetting) -> QuantizationOptimizationPipeline:
return QuantizationOptimizationPipeline([
QuantizeRefinePass(),
QuantizeSimplifyPass(),
ParameterQuantizePass(),
MyFusion(name='My Optimization Procedure'),
RuntimeCalibrationPass(),
QuantAlignmentPass(),
PassiveParameterQuantizePass()])
from ppq.api import quantize_torch_model, register_network_quantizer
register_network_quantizer(quantizer=MyQuantizer, platform=TargetPlatform.EXTENSION)
# ------------------------------------------------------------
# 如果你使用 ENABLE_CUDA_KERNEL 方法
# PPQ 将会尝试编译自定义的高性能量化算子,这一过程需要编译环境的支持
# 如果你在编译过程中发生错误,你可以删除此处对于 ENABLE_CUDA_KERNEL 方法的调用
# 这将显著降低 PPQ 的运算速度;但即使你无法编译这些算子,你仍然可以使用 pytorch 的 gpu 算子完成量化
# ------------------------------------------------------------
with ENABLE_CUDA_KERNEL():
quantized = quantize_torch_model(
model=model, calib_dataloader=CALIBRATION,
calib_steps=32, input_shape=INPUT_SHAPE,
collate_fn=collate_fn, platform=TargetPlatform.EXTENSION,
onnx_export_file='model.onnx', device=DEVICE, verbose=0)
result
____ ____ __ ____ __ __
/ __ \/ __ \/ / / __ \__ ______ _____ / /_____ ____ / /
/ /_/ / /_/ / / / / / / / / / __ `/ __ \/ __/ __ \/ __ \/ /
/ ____/ ____/ /__/ /_/ / /_/ / /_/ / / / / /_/ /_/ / /_/ / /
/_/ /_/ /_____\___\_\__,_/\__,_/_/ /_/\__/\____/\____/_/
[31m[Warning] Compling Kernels... Please wait (It will take a few minutes).[0m
[07:13:18] PPQ Quantization Config Refine Pass Running ... Finished.
[07:13:18] PPQ Quantize Simplify Pass Running ... Finished.
[07:13:18] PPQ Parameter Quantization Pass Running ... Finished.
[07:13:19] My Optimization Procedure Running ... Finished.
[07:13:19] PPQ Runtime Calibration Pass Running ...
Calibration Progress(Phase 1): 0%| | 0/32 [00:00<?, ?it/s]
Calibration Progress(Phase 1): 3%|▎ | 1/32 [00:00<00:09, 3.10it/s]
Calibration Progress(Phase 1): 6%|▋ | 2/32 [00:00<00:09, 3.08it/s]
Calibration Progress(Phase 1): 9%|▉ | 3/32 [00:01<00:10, 2.86it/s]
Calibration Progress(Phase 1): 12%|█▎ | 4/32 [00:01<00:09, 2.94it/s]
Calibration Progress(Phase 1): 16%|█▌ | 5/32 [00:01<00:08, 3.11it/s]
Calibration Progress(Phase 1): 19%|█▉ | 6/32 [00:02<00:08, 2.94it/s]
Calibration Progress(Phase 1): 22%|██▏ | 7/32 [00:02<00:08, 2.95it/s]
Calibration Progress(Phase 1): 25%|██▌ | 8/32 [00:02<00:08, 2.96it/s]
Calibration Progress(Phase 1): 28%|██▊ | 9/32 [00:02<00:07, 3.05it/s]
Calibration Progress(Phase 1): 31%|███▏ | 10/32 [00:03<00:07, 3.10it/s]
Calibration Progress(Phase 1): 34%|███▍ | 11/32 [00:03<00:06, 3.00it/s]
Calibration Progress(Phase 1): 38%|███▊ | 12/32 [00:03<00:06, 3.08it/s]
Calibration Progress(Phase 1): 41%|████ | 13/32 [00:04<00:06, 3.15it/s]
Calibration Progress(Phase 1): 44%|████▍ | 14/32 [00:04<00:05, 3.13it/s]
Calibration Progress(Phase 1): 47%|████▋ | 15/32 [00:05<00:06, 2.83it/s]
Calibration Progress(Phase 1): 50%|█████ | 16/32 [00:05<00:05, 2.76it/s]
Calibration Progress(Phase 1): 53%|█████▎ | 17/32 [00:05<00:05, 2.94it/s]
Calibration Progress(Phase 1): 56%|█████▋ | 18/32 [00:06<00:04, 2.90it/s]
Calibration Progress(Phase 1): 59%|█████▉ | 19/32 [00:06<00:04, 3.07it/s]
Calibration Progress(Phase 1): 62%|██████▎ | 20/32 [00:06<00:03, 3.02it/s]
Calibration Progress(Phase 1): 66%|██████▌ | 21/32 [00:06<00:03, 3.19it/s]
Calibration Progress(Phase 1): 69%|██████▉ | 22/32 [00:07<00:03, 3.14it/s]
Calibration Progress(Phase 1): 72%|███████▏ | 23/32 [00:07<00:02, 3.34it/s]
Calibration Progress(Phase 1): 75%|███████▌ | 24/32 [00:07<00:02, 3.18it/s]
Calibration Progress(Phase 1): 78%|███████▊ | 25/32 [00:08<00:02, 3.15it/s]
Calibration Progress(Phase 1): 81%|████████▏ | 26/32 [00:08<00:01, 3.13it/s]
Calibration Progress(Phase 1): 84%|████████▍ | 27/32 [00:08<00:01, 3.28it/s]
Calibration Progress(Phase 1): 88%|████████▊ | 28/32 [00:09<00:01, 3.24it/s]
Calibration Progress(Phase 1): 91%|█████████ | 29/32 [00:09<00:00, 3.11it/s]
Calibration Progress(Phase 1): 94%|█████████▍| 30/32 [00:09<00:00, 3.06it/s]
Calibration Progress(Phase 1): 97%|█████████▋| 31/32 [00:10<00:00, 3.08it/s]
Calibration Progress(Phase 1): 100%|██████████| 32/32 [00:10<00:00, 3.12it/s]
Calibration Progress(Phase 1): 100%|██████████| 32/32 [00:10<00:00, 3.06it/s]
Finished.
[07:13:30] PPQ Quantization Alignment Pass Running ... Finished.
[07:13:30] PPQ Passive Parameter Quantization Running ... Finished.
--------- Network Snapshot ---------
Num of Op: [100]
Num of Quantized Op: [54]
Num of Variable: [277]
Num of Quantized Var: [207]
------- Quantization Snapshot ------
Num of Quant Config: [214]
ACTIVATED: [108]
FP32: [106]
Network Quantization Finished.
文章来源:https://www.toymoban.com/news/detail-733916.html
到了这里,关于2.11、自定义图融合过程与量化管线的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!