1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning

这篇具有很好参考价值的文章主要介绍了1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2022CIKM

1 intro

1.1 背景

  • 轨迹相似度计算是轨迹分析任务(相似子轨迹搜索、轨迹预测和轨迹聚类)最基础的组件之一
  • 现有的关于轨迹相似度计算的研究主要可以分为两大类:
    • 传统方法
      • DTW、EDR、EDwP等
      • 二次计算复杂度O(n^2)
      • 缺乏稳健性
        • 会受到非均匀采样、噪点的影响
    • 基于学习的方法
      • 旨在减少计算复杂度和/或提高稳健性
      • 根据它们的目的将它们分为两个方向
        • 神经逼近方法
          • 利用强大的神经网络在隐藏空间中逼近任何现有的轨迹测量
          • 训练一个神经网络g以将轨迹编码到隐藏空间
          • 最小化估计的相似性和基准之间的差异
              • Dh​是隐藏空间中的差异(相似性)测量(例如,欧几里得距离)
          • 不需要两个轨迹之间的点对齐,因此计算复杂度在轨迹的长度上是线性的
          • 由于要逼近的测量而遭受 稳健性问题
        • auto-encoder 方法
          • 无监督地学习映射函
          • 为了提高潜在表示相对于低质量的鲁棒性,这些方法采用了不同的策略
            • t2vec利用去噪顺序自编码器
            • Trembr整合了路网信息并设计了多个任务
          • 在训练编码模型方面 效率低下
            • 这是由于顺序自编码器架构的固有限制,其中解码过程和逐步重构非常耗时
            • t2vec 在 Tesla K40 GPU 上训练 2千万轨迹的一个epoch大约需要 14 小时,平均每个轨迹有 60 个样本
          • 这些方法试图学习相同基础路线轨迹(高采样轨迹)的一致表示以解决质量问题
            • 换句话说,即使来自相同基础路线的轨迹具有不同的采样率和噪点,表示应该是相同的
            • 论文认为,由于他们的目标是重构轨迹而不是基础路线,顺序自编码器无法实现这一目标
            • ——>对于顺序自编码器来说, 获得一致的表示是非常困难的

1.2 论文思路

  • 提出了一种基于对比学习的轨迹相似性计算的新型鲁棒模型(CL-TSim)
    • 遵循常见的范例,首先学习轨迹的表示,然后使用欧几里得距离在编码空间中计算轨迹之间的相似性
  • 对轨迹 Ti 进行预处理,以获得增强轨迹 Tj
    • 其中使用下采样和扭曲增强来适应轨迹特征,包括非均匀采样率和噪点
  • 同时将它们编码到隐藏空间并最大化它们之间的一致性
  • 遵循对比学习架构,CL-TSim 只包含一个编码器和一个投影器
    • 编码器用于编码原始轨迹以学习它们的表示
    • 投影器用于将表示映射到损失函数的度量空间
    • 与顺序自编码器相比,它不需要解码器和逐步重构,这可以显著减少训练时间。

2 Preliminary

2.1 基础路线

  • 由移动对象生成的连续空间曲线
  • 只存在于理论中,因为配备了 GPS 的设备无法连续记录时空位置

2.2  轨迹

  • 移动对象的轨迹,记为 T
  • 从基础路线中采样的一系列有限点的序列,形式为 𝑇=((𝑥1,𝑦1,𝑡1),(𝑥2,𝑦2,𝑡2),...,(𝑥𝑛,𝑦𝑛,𝑡𝑛))
  • xi,yi 代表在时间戳 𝑡𝑖 的采样位置的经度和纬度信息
  • 受采样方法和设备的影响,轨迹通常基于不同的采样率生成,并包含有噪点

2.3 问题定义

给定一组轨迹,我们的问题是设计一个高效且鲁棒的模型,以计算轨迹之间的相似性,目标如下:

1)高效的表示学习:有效地为每个轨迹 T 学习一个表示 t,其中 t 可以反映轨迹 T 的基础路线,用于计算轨迹相似性;

 2)模型的鲁棒性:换句话说,两个任意轨迹Ti 和Tj 之间的相似性是一致的,不受非均匀采样率和噪点的影响

3 模型

1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning,论文笔记,论文阅读

4 实验

4.1 数据

1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning,论文笔记,论文阅读

4.2 评估方法

4.2.1 自相似性

  • 给定一组轨迹,随机选择 m 条轨迹和 n 条轨迹,分别记为 Q 和 D
    • 对于 Q 中的每条轨迹,通过交替从中取点来创建两个子轨迹(称为双胞胎轨迹),并将第一个子轨迹加入 Q1,而另一个加入 Q2
    • 对于 Q1 中的每条轨迹,称为查询轨迹,我们在Q2∪D 中检索最相似的轨迹,称为数据库轨迹
    • 显然,Q2 中的轨迹应该排在 D 之前,因为它们是由与 Q1 中相同的轨迹生成的
  • 假设 Ti 是 Q1 中的一个查询轨迹,而 Tj 是 Q2 中的相应双胞胎轨迹
    • 计算 Ti 与 Q2∪D1 之间轨迹的相似性,根据相似性对轨迹进行排序,并记 Tj 的排名为 ri
  • 基于此,采用两个广泛使用的度量标准,即精确度 P 和平均排名 MR
    • 1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning,论文笔记,论文阅读

当 ri 等于 0 时,pi 等于 1;否则,pi 等于 0。(只有查询数据集里面Tj是最相似的,才会是1)

更大的 P 或更小的 MR 值意味着更好的自相似性性能。

4.2.2 交叉相似性

一个好的相似性度量应该能够保持两个不同轨迹之间的相似性,而不考虑数据采样策略

交叉距离偏差(CDD)来评估性能

1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning,论文笔记,论文阅读

Ta 和 Tb 是具有原始率的两个不同的轨迹,Ta′(rd) 是通过以 d 的速率随机丢弃(或扭曲)样本点获得的Ta 的变体,而 Tb′(rd) 是以与 Ta′(rd) 相同的方式获得的 Tb 的变体。

较小的 CDD 值表明评估的相似性(即,距离)更接近真实值。

4.3 结果

1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning,论文笔记,论文阅读

1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning,论文笔记,论文阅读

1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning,论文笔记,论文阅读

1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning,论文笔记,论文阅读

1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning,论文笔记,论文阅读

 文章来源地址https://www.toymoban.com/news/detail-734044.html

到了这里,关于1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文笔记: Trajectory Clustering: A Partition-and-Group Framework

    07 Sigmoid 使用类DBSCAN的思路对轨迹聚类 现有的轨迹聚类算法是将相似的轨迹作为一个整体进行聚类,从而发现共同的轨迹。 但是这样容易错过一些共同的子轨迹( sub-trajectories )。 而在实际中,当我们对特殊感兴趣的区域进行分析时,子轨迹就特别重要。 图中有五条轨迹,

    2024年02月06日
    浏览(39)
  • 【论文阅读笔记】Traj-MAE: Masked Autoencoders for Trajectory Prediction

    通过预测可能的危险,轨迹预测一直是构建可靠的自动驾驶系统的关键任务。一个关键问题是在不发生碰撞的情况下生成一致的轨迹预测。为了克服这一挑战,我们提出了一种有效的用于轨迹预测的掩蔽自编码器(Traj-MAE),它能更好地代表驾驶环境中智能体的复杂行为。 具体

    2024年02月06日
    浏览(41)
  • 论文笔记:Continuous Trajectory Generation Based on Two-Stage GAN

    2023 AAAI 建模人类个体移动模式并生成接近真实的轨迹在许多应用中至关重要 1)生成轨迹方法能够为城市规划、流行病传播分析和交通管控等城市假设分析场景提供仿仿真数据支撑 2)生成轨迹方法也是目前促进轨迹数据开源共享与解决轨迹数据隐私问题的可行解决方案 在不

    2024年02月12日
    浏览(60)
  • [论文笔记] Gemini: A Computation-Centric Distributed Graph Processing System

    Gemini: 以计算为中心的分布式图处理系统 [Paper] [Slides] [Code] OSDI’16 提出了 Gemini, 一个分布式图处理系统, 应用了多种针对计算性能的优化以在 效率之上构建可扩展性 . Gemini 采用: 稀疏-稠密信号槽 抽象, 将混合推拉计算模型扩展到分布式场景 基于分块的划分 (chunk-based partiti

    2024年02月15日
    浏览(39)
  • 论文笔记:TRANSIT: Fine-grained human mobility trajectory inference at scalewith mobile network signalin

    Type C 2021 来自移动网络运营商的通话详单(CDR)作为一种较新的移动性数据,已经被用来: 推导人类移动的一般法则 建立OD 矩阵 推断人口密度变化 理解城市土地使用情况 CDR呈现了一种独特的可取特性组合: 提供了前所未有的渗透率,因为它们适用于网络提供商的整个订户

    2024年02月19日
    浏览(34)
  • 论文笔记--LLaMA: Open and Efficient Foundation Language Models

    标题:LLaMA: Open and Efficient Foundation Language Models 作者:Touvron, Hugo, et al. 日期:2023 期刊:arxiv preprint   文章利用公开数据集训练并发布了一系列大语言模型LLaMA,在多个NLP下游任务中性能超过了GPT-3和PALM等模型。 English CommonCrawl(67%): 训练集的大部分构成为2017~2020年间的Com

    2024年02月09日
    浏览(54)
  • 【论文阅读笔记】MobileSal: Extremely Efficient RGB-D Salient Object Detection

    MobileSal: Extremely Efficient RGB-D Salient Object Detection MobileSal:极其高效的RGB-D显著对象检测 2021年发表在 IEEE Transactions on Pattern Analysis and Machine Intelligence。 Paper Code 神经网络的高计算成本阻碍了RGB-D显着对象检测(SOD)的最新成功,使其无法用于现实世界的应用。因此,本文介绍了

    2024年01月18日
    浏览(38)
  • LLaMA模型论文《LLaMA: Open and Efficient Foundation Language Models》阅读笔记

    LLaMA是meta在2023年2月开源的大模型,在这之后,很多开源模型都是基于LLaMA的,比如斯坦福大学的羊驼模型。 LLaMA的重点是比通常情况下使用更多的语料,来训练一系列可在各种推理预算下实现可能的最佳性能的语言模型。 摘要翻译:我们在此介绍LLaMA,这是一个参数范围从

    2024年02月15日
    浏览(43)
  • 【论文阅读笔记】Prompt Tuning for Parameter-efficient Medical Image Segmentation

    Fischer M, Bartler A, Yang B. Prompt tuning for parameter-efficient medical image segmentation[J]. Medical Image Analysis, 2024, 91: 103024. 【开源】 【核心思想】 本文的核心思想是提出了一种用于医学图像分割的参数高效的提示调整(Prompt Tuning)方法。这种方法基于预训练的神经网络,通过插入可学习的

    2024年01月17日
    浏览(53)
  • 【论文笔记】CRN: Camera Radar Net for Accurate, Robust, Efficient 3D Perception

    原文链接:https://arxiv.org/abs/2304.00670   本文提出两阶段融合方法CRN,能使用相机和雷达生成语义丰富且位置精确的BEV特征。具体来说,首先将图像透视特征转换到BEV下,该步骤依赖雷达,称为雷达辅助的视图变换(RVT)。由于转换得到的BEV特征并非完全精确,接下来的多模

    2024年02月03日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包