大数据与智能数据应用架构

这篇具有很好参考价值的文章主要介绍了大数据与智能数据应用架构。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者:禅与计算机程序设计艺术

1.简介

数据量越来越大、应用场景越来越复杂、用户对数据的要求越来越高,人们逐渐把目光转移到如何快速、高效地处理海量数据上。在人工智能、云计算、大数据等新潮流技术的驱动下,数据分析领域已经从传统的基于规则的分析向“智能”分析转变。随着人工智能模型越来越准确、能源消耗降低、内存占用降低、运算速度提升、数据存储降低等方面的进步,我们可以预见到人工智能将成为主要的发展方向,而数据分析则会成为新的主导者。为了更好地管理和处理海量数据,我们需要进行架构的转型升级,建设一套面向数据的智能数据处理平台。基于大数据与智能数据应用的特点及发展趋势,本文试图为读者呈现一套完整的数据分析平台架构设计,并结合实际案例,阐述如何在互联网公司构建大数据智能化架构。

2.数据分析概述

数据分析(Data Analysis)是指按照规律或模式从数据中发现信息,并据此做出决策、指导行动或调整策略。一般来说,数据分析方法包括:

  1. 经验法:根据过去的经验、对数据具有一定认知水平的人员的总结及理解。如市场调查、公共政策、舆论监测等。

  2. 技术法:利用计算机分析、统计学、数学等技术手段来处理数据,识别模式和趋势。如数据挖掘、商业智能、图像分析、文本挖掘等。

  3. 理论法:运用经济学、物理学、数学、心理学、哲学、社会科学等学科理论,对数据进行抽象、归纳和阐述。如历史学、宏观经济学、生物学、认知科学等。

数据分析应用通常分为以下几类:

  1. 数据挖掘(Data Mining):从大量数据中提取有价值的信息,建立数据模型,发现隐藏的关系和模式,通文章来源地址https://www.toymoban.com/news/detail-734449.html

到了这里,关于大数据与智能数据应用架构的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包