1、需要引入Redis的maven坐标
<!--redis和 springboot集成的包 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
<version>2.3.0.RELEASE</version>
</dependency>
2、redis配置
spring:
# Redis数据库索引
redis:
database: 0
# Redis服务器地址
host: 127.0.0.1
# Redis服务器连接端口
port: 6379
# Redis服务器连接密码(默认为空)
password:
# 连接池最大连接数(使用负值表示没有限制)
jedis:
pool:
max-active: 8
# 连接池最大阻塞等待时间(使用负值表示没有限制)
max-wait: -1
# 连接池中的最大空闲连接
max-idle: 8
# 连接池中的最小空闲连接
min-idle: 0
# 连接超时时间(毫秒)
timeout: 10000
3、新建脚本放在该项目的 resources 目录下,新建 limit.lua
local key = KEYS[1] --限流KEY
local limit = tonumber(ARGV[1]) --限流大小
local current = tonumber(redis.call('get', key) or "0") if current + 1 > limit then
return 0 else redis.call("INCRBY", key,"1") redis.call("expire", key,"2") return current + 1 end
4、自定义限流注解
import java.lang.annotation.*;
@Target(value = ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface RedisRateLimiter {
//往令牌桶放入令牌的速率
double value() default Double.MAX_VALUE;
//获取令牌的超时时间
double limit() default Double.MAX_VALUE;
}
5、自定义切面类 RedisLimiterAspect 类 ,修改扫描自己controller类
import com.imooc.annotation.RedisRateLimiter;
import org.apache.commons.lang3.StringUtils;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.aspectj.lang.reflect.MethodSignature;
import org.assertj.core.util.Lists;
import org.json.JSONObject;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.io.ClassPathResource;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.scripting.support.ResourceScriptSource;
import org.springframework.stereotype.Component;
import javax.annotation.PostConstruct;
import javax.servlet.http.HttpServletResponse;
import java.io.PrintWriter;
import java.util.List;
@Aspect
@Component
public class RedisLimiterAspect {
@Autowired
private HttpServletResponse response;
/**
* 注入redis操作类
*/
@Autowired
private StringRedisTemplate stringRedisTemplate;
private DefaultRedisScript<List> redisScript;
/**
* 初始化 redisScript 类
* 返回值为 List
*/
@PostConstruct
public void init(){
redisScript = new DefaultRedisScript<List>();
redisScript.setResultType(List.class);
redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("limit.lua")));
}
public final static Logger log = LoggerFactory.getLogger(RedisLimiterAspect.class);
@Pointcut("execution( public * com.zz.controller.*.*(..))")
public void pointcut(){
}
@Around("pointcut()")
public Object process(ProceedingJoinPoint proceedingJoinPoint) throws Throwable {
MethodSignature signature = (MethodSignature)proceedingJoinPoint.getSignature();
//使用Java 反射技术获取方法上是否有@RedisRateLimiter 注解类
RedisRateLimiter redisRateLimiter = signature.getMethod().getDeclaredAnnotation(RedisRateLimiter.class);
if(redisRateLimiter == null){
//正常执行方法,执行正常业务逻辑
return proceedingJoinPoint.proceed();
}
//获取注解上的参数,获取配置的速率
double value = redisRateLimiter.value();
double time = redisRateLimiter.limit();
//list设置lua的keys[1]
//取当前时间戳到单位秒
String key = "ip:"+ System.currentTimeMillis() / 1000;
List<String> keyList = Lists.newArrayList(key);
//用户Mpa设置Lua 的ARGV[1]
//List<String> argList = Lists.newArrayList(String.valueOf(value));
//调用脚本并执行
List result = stringRedisTemplate.execute(redisScript, keyList, String.valueOf(value),String.valueOf(time));
log.info("限流时间段内访问第:{} 次", result.toString());
//lua 脚本返回 "0" 表示超出流量大小,返回1表示没有超出流量大小
if(StringUtils.equals(result.get(0).toString(),"0")){
//服务降级
fullback();
return null;
}
// 没有限流,直接放行
return proceedingJoinPoint.proceed();
}
/**
* 服务降级方法
*/
private void fullback(){
response.setCharacterEncoding("UTF-8");
response.setContentType("application/json; charset=utf-8");
PrintWriter writer = null;
try {
writer= response.getWriter();
JSONObject o = new JSONObject();
o.put("status",500);
o.put("msg","Redis限流:请求太频繁,请稍后重试!");
o.put("data",null);
writer.printf(o.toString()
);
}catch (Exception e){
e.printStackTrace();
}finally {
if(writer != null){
writer.close();
}
}
}
}
6、在需要限流的类添加注解
import com.imooc.annotation.RedisRateLimiter;
import io.swagger.annotations.Api;
import io.swagger.annotations.ApiOperation;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.concurrent.TimeUnit;
@RestController
@Api(value = "限流", tags = {"限流测试接口"})
@RequestMapping("limiter")
public class LimiterController {
@ApiOperation(value = "Redis限流注解测试接口",notes = "Redis限流注解测试接口", httpMethod = "GET")
@RedisRateLimiter(value = 10, limit = 1)
@GetMapping("/redislimit")
public IMOOCJSONResult redislimit(){
System.out.println("Redis限流注解测试接口");
return IMOOCJSONResult.ok();
}
}
文章来源地址https://www.toymoban.com/news/detail-734461.html
文章来源:https://www.toymoban.com/news/detail-734461.html
到了这里,关于redis+lua实现限流的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!