NLP之LSTM与BiLSTM

这篇具有很好参考价值的文章主要介绍了NLP之LSTM与BiLSTM。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

代码展示

import pandas as pd
import tensorflow as tf
tf.random.set_seed(1)
df = pd.read_csv("../data/Clothing Reviews.csv")
print(df.info())

df['Review Text'] = df['Review Text'].astype(str)
x_train = df['Review Text']
y_train = df['Rating']
print(y_train.unique())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23486 entries, 0 to 23485
Data columns (total 11 columns):
 #   Column                   Non-Null Count  Dtype 
---  ------                   --------------  ----- 
 0   Unnamed: 0               23486 non-null  int64 
 1   Clothing ID              23486 non-null  int64 
 2   Age                      23486 non-null  int64 
 3   Title                    19676 non-null  object
 4   Review Text              22641 non-null  object
 5   Rating                   23486 non-null  int64 
 6   Recommended IND          23486 non-null  int64 
 7   Positive Feedback Count  23486 non-null  int64 
 8   Division Name            23472 non-null  object
 9   Department Name          23472 non-null  object
 10  Class Name               23472 non-null  object
[4 5 3 2 1]
from tensorflow.keras.preprocessing.text import Tokenizer

dict_size = 14848
tokenizer = Tokenizer(num_words=dict_size)

tokenizer.fit_on_texts(x_train)
print(len(tokenizer.word_index),tokenizer.index_word)

x_train_tokenized = tokenizer.texts_to_sequences(x_train)
from tensorflow.keras.preprocessing.sequence import pad_sequences
max_comment_length = 120
x_train = pad_sequences(x_train_tokenized,maxlen=max_comment_length)

for v in x_train[:10]:
    print(v,len(v))
# 构建RNN神经网络
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,SimpleRNN,Embedding,LSTM,Bidirectional
import tensorflow as tf

rnn = Sequential()
# 对于rnn来说首先进行词向量的操作
rnn.add(Embedding(input_dim=dict_size,output_dim=60,input_length=max_comment_length))
# RNN:simple_rnn (SimpleRNN)  (None, 100)   16100
# LSTM:simple_rnn (SimpleRNN)  (None, 100)  64400
rnn.add(Bidirectional(LSTM(units=100)))  # 第二层构建了100个RNN神经元
rnn.add(Dense(units=10,activation=tf.nn.relu))
rnn.add(Dense(units=6,activation=tf.nn.softmax))  # 输出分类的结果
rnn.compile(loss='sparse_categorical_crossentropy',optimizer="adam",metrics=['accuracy'])
print(rnn.summary())
result = rnn.fit(x_train,y_train,batch_size=64,validation_split=0.3,epochs=10)
print(result)
print(result.history)

代码解读

首先,我们来总结这段代码的流程:

  1. 导入了必要的TensorFlow Keras模块。
  2. 初始化了一个Sequential模型,这表示我们的模型会按顺序堆叠各层。
  3. 添加了一个Embedding层,用于将整数索引(对应词汇)转换为密集向量。
  4. 添加了一个双向LSTM层,其中包含100个神经元。
  5. 添加了两个Dense全连接层,分别包含10个和6个神经元。
  6. 使用sparse_categorical_crossentropy损失函数编译了模型。
  7. 打印了模型的摘要。
  8. 使用给定的训练数据和验证数据对模型进行了训练。
  9. 打印了训练的结果。

现在,让我们逐行解读代码:

  1. 导入依赖:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,SimpleRNN,Embedding,LSTM,Bidirectional
import tensorflow as tf

你导入了创建和训练RNN模型所需的TensorFlow Keras库。

  1. 初始化模型:
rnn = Sequential()

你选择了一个顺序模型,这意味着你可以简单地按顺序添加层。

  1. 添加Embedding层:
rnn.add(Embedding(input_dim=dict_size,output_dim=60,input_length=max_comment_length))

此层将整数索引转换为固定大小的向量。dict_size是词汇表的大小,max_comment_length是输入评论的最大长度。

  1. 添加LSTM层:
rnn.add(Bidirectional(LSTM(units=100)))

你选择了双向LSTM,这意味着它会考虑过去和未来的信息。它有100个神经元。

  1. 添加全连接层:
rnn.add(Dense(units=10,activation=tf.nn.relu))
rnn.add(Dense(units=6,activation=tf.nn.softmax))

这两个Dense层用于模型的输出,最后一层使用softmax激活函数进行6类的分类。

  1. 编译模型:
rnn.compile(loss='sparse_categorical_crossentropy',optimizer="adam",metrics=['accuracy'])

你选择了一个适合分类问题的损失函数,并选择了adam优化器。

  1. 显示模型摘要:
print(rnn.summary())

这将展示模型的结构和参数数量。

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 embedding (Embedding)       (None, 120, 60)           890880    
                                                                 
 bidirectional (Bidirectiona  (None, 200)              128800    
 l)                                                              
                                                                 
 dense (Dense)               (None, 10)                2010      
                                                                 
 dense_1 (Dense)             (None, 6)                 66        
                                                                 
=================================================================
Total params: 1,021,756
Trainable params: 1,021,756
Non-trainable params: 0
_________________________________________________________________
None
  1. 训练模型:
result = rnn.fit(x_train,y_train,batch_size=64,validation_split=0.3,epochs=10)

你用训练数据集训练了模型,其中30%的数据用作验证,训练了10个周期。

Epoch 1/10
257/257 [==============================] - 74s 258ms/step - loss: 1.2142 - accuracy: 0.5470 - val_loss: 1.0998 - val_accuracy: 0.5521
Epoch 2/10
257/257 [==============================] - 57s 221ms/step - loss: 0.9335 - accuracy: 0.6293 - val_loss: 0.9554 - val_accuracy: 0.6094
Epoch 3/10
257/257 [==============================] - 59s 229ms/step - loss: 0.8363 - accuracy: 0.6616 - val_loss: 0.9321 - val_accuracy: 0.6168
Epoch 4/10
257/257 [==============================] - 61s 236ms/step - loss: 0.7795 - accuracy: 0.6833 - val_loss: 0.9812 - val_accuracy: 0.6089
Epoch 5/10
257/257 [==============================] - 56s 217ms/step - loss: 0.7281 - accuracy: 0.7010 - val_loss: 0.9559 - val_accuracy: 0.6043
Epoch 6/10
257/257 [==============================] - 56s 219ms/step - loss: 0.6934 - accuracy: 0.7156 - val_loss: 1.0197 - val_accuracy: 0.5999
Epoch 7/10
257/257 [==============================] - 57s 220ms/step - loss: 0.6514 - accuracy: 0.7364 - val_loss: 1.1192 - val_accuracy: 0.6080
Epoch 8/10
257/257 [==============================] - 57s 222ms/step - loss: 0.6258 - accuracy: 0.7486 - val_loss: 1.1350 - val_accuracy: 0.6100
Epoch 9/10
257/257 [==============================] - 57s 220ms/step - loss: 0.5839 - accuracy: 0.7749 - val_loss: 1.1537 - val_accuracy: 0.6019
Epoch 10/10
257/257 [==============================] - 57s 222ms/step - loss: 0.5424 - accuracy: 0.7945 - val_loss: 1.1715 - val_accuracy: 0.5744
<keras.callbacks.History object at 0x00000244DCE06D90>
  1. 显示训练结果:
print(result)
<keras.callbacks.History object at 0x0000013AEAAE1A30>
print(result.history)
{'loss': [1.2142471075057983, 0.9334620833396912, 0.8363043069839478, 0.7795010805130005, 0.7280740141868591, 0.693393349647522, 0.6514003872871399, 0.6257606744766235, 0.5839114189147949, 0.5423741340637207], 
'accuracy': [0.5469586253166199, 0.6292579174041748, 0.6616179943084717, 0.6833333373069763, 0.7010340690612793, 0.7156326174736023, 0.7363746762275696, 0.748600959777832, 0.7748783230781555, 0.7944647073745728], 
'val_loss': [1.0997602939605713, 0.9553984999656677, 0.932131290435791, 0.9812102317810059, 0.9558586478233337, 1.019730806350708, 1.11918044090271, 1.1349923610687256, 1.1536787748336792, 1.1715185642242432], 
'val_accuracy': [0.5520862936973572, 0.609423816204071, 0.6168038845062256, 0.6088560819625854, 0.6043145060539246, 0.5999148488044739, 0.6080045700073242, 0.6099914908409119, 0.6019017696380615, 0.574368417263031]
}

这将展示训练过程中的损失和准确性等信息。

双向LSTM介绍(BiLSTM)

NLP之LSTM与BiLSTM,# 1. 自然语言处理&amp;知识图谱,自然语言处理,lstm,人工智能
NLP之LSTM与BiLSTM,# 1. 自然语言处理&amp;知识图谱,自然语言处理,lstm,人工智能
NLP之LSTM与BiLSTM,# 1. 自然语言处理&amp;知识图谱,自然语言处理,lstm,人工智能
例子:
NLP之LSTM与BiLSTM,# 1. 自然语言处理&amp;知识图谱,自然语言处理,lstm,人工智能
NLP之LSTM与BiLSTM,# 1. 自然语言处理&amp;知识图谱,自然语言处理,lstm,人工智能
NLP之LSTM与BiLSTM,# 1. 自然语言处理&amp;知识图谱,自然语言处理,lstm,人工智能文章来源地址https://www.toymoban.com/news/detail-735342.html

到了这里,关于NLP之LSTM与BiLSTM的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自然语言处理(NLP)

    基础 自然语言处理(NLP) 自然语言处理PaddleNLP-词向量应用展示 自然语言处理(NLP)-前预训练时代的自监督学习 自然语言处理PaddleNLP-预训练语言模型及应用 自然语言处理PaddleNLP-文本语义相似度计算(ERNIE-Gram) 自然语言处理PaddleNLP-词法分析技术及其应用 自然语言处理Pa

    2024年02月08日
    浏览(50)
  • 自然语言处理NLP介绍——NLP简介

    2024年02月15日
    浏览(71)
  • NLP自然语言处理介绍

    自然语言处理(NLP,Natural Language Processing)是一门涉及计算机与人类语言之间交互的学科。它的目标是使计算机能够理解和生成人类语言,从而更好地处理和解析大量的文本数据。NLP不仅是人工智能领域中一个重要的分支,也是当今社会应用广泛的领域之一。 在NLP中,一个基

    2024年01月21日
    浏览(64)
  • 自然语言处理2-NLP

    目录 自然语言处理2-NLP 如何把词转换为向量 如何让向量具有语义信息 在CBOW中 在Skip-gram中 skip-gram比CBOW效果更好 CBOW和Skip-gram的算法实现 Skip-gram的理想实现 Skip-gram的实际实现 在自然语言处理任务中, 词向量(Word Embedding)是表示自然语言里单词的一种方法 ,即把每个词都表

    2024年02月11日
    浏览(66)
  • 自然语言处理(NLP)技术

            自然语言处理技术是一种人工智能技术,它的目标是使计算机能够理解、分析、处理和生成自然语言(人类使用的语言)。NLP技术包括文本分类、情感分析、机器翻译、语音识别、语音合成、信息检索、信息抽取、问答系统等。NLP技术的应用非常广泛,例如智能客

    2024年02月14日
    浏览(55)
  • 聊聊自然语言处理NLP

    自然语言处理(NLP)的正式定义:是一个使用计算机科学、人工智能(AI)和形式语言学概念来分析自然语言的研究领域。不太正式的定义表明:它是一组工具,用于从自然语言源(如web页面和文本文档)获取有意义和有用的信息。 NLP工具的实现一般是基于机器学习与深度学习、其它

    2024年02月14日
    浏览(66)
  • 自然语言处理NLP:一文了解NLP自然语言处理技术,NLP在生活中的应用,图导加深了解,NLP语料库,NLP开源工具

    目录 1.自然语言处理NLP 1.1 NLP中英对照(双份) 1.2 相关文章  2.NLP语料库

    2024年02月09日
    浏览(61)
  • 自然语言处理(NLP) —— 心理语言学

            认知科学和心理语言学是两个密切相关的领域,它们研究 认知过程和语言使用是如何相互作用的。         在历史上,这两个领域的发展经历了几个重要的阶段: 1.1.1 19世纪晚期(内省法)         Wundt 和其他德国心理学家使用一种叫做 内省法 的研究方

    2024年02月21日
    浏览(62)
  • 自然语言处理(NLP)是什么?

    您有没有和聊天机器人互动过?或者您是否向虚拟助手,例如 Siri、Alexa 或您车上的车载娱乐系统发出过某些请求?您使用过在线翻译吗?我们大多数人都曾与这些人工智能 (AI) 互动过,我们也从未停止过思考如何便捷地表达我们的需求并获得适当的回应。如果我和Siri说:“

    2024年02月10日
    浏览(63)
  • NLP(自然语言处理)是什么?

    NLP基本概念: 自然语言处理( Natural Language Processing, NLP)是以语言为对象,利用计算机技术来分析、理解和处理自然语言的一门学科,即把计算机作为语言研究的强大工具,在计算机的支持下对语言信息进行定量化的研究,并提供可供人与计算机之间能共同使用的语言描写。包括

    2024年02月12日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包