GPT实战系列-如何用自己数据微调ChatGLM2模型训练

这篇具有很好参考价值的文章主要介绍了GPT实战系列-如何用自己数据微调ChatGLM2模型训练。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

1、训练数据

广告文案生成模型

输入文字:类型#裙颜色#蓝色风格#清新*图案#蝴蝶结

输出文案:裙身处采用立体蝴蝶结装饰辅以蓝色条带点缀,令衣身造型饱满富有层次的同时为其注入一丝甜美气息。将女孩清新娇俏的一面衬托而出。

训练和测试数据组织:
{"content": "类型#裙*颜色#蓝色*风格#清新*图案#蝴蝶结", "summary": "裙身处采用立体蝴蝶结装饰辅以蓝色条带点缀,令衣身造型饱满富有层次的同时为其注入一丝甜美气息。将女孩清新娇俏的一面衬托而出。"}

{"content": "类型#裙*颜色#白色*风格#清新*图案#碎花*裙腰型#松紧腰*裙长#长裙*裙衣门襟#拉链*裙款式#拉链", "summary": "这条颜色素雅的长裙,以纯净的白色作为底色,辅以印在裙上的点点小碎花,<UNK>勾勒出一幅生动优美的“风景图”,给人一种大自然的清新之感,好似吸收新鲜空气的那种舒畅感。腰间贴心地设计成松紧腰,将腰线很好地展现出来,十分纤巧,在裙子的侧边,有着一个隐形的拉链,能够让你穿脱自如。"}

数据可以从 下载链接,test.json
或者Tsinghua Cloud 下载处理好的 ADGEN 完整数据集。可以看到解压后的文件有两个,分别是train.json和dev.json。

2、训练脚本

ChatGLM2的训练源代码:https://github.com/THUDM/ChatGLM2-6B

文件目录结构:

├── FAQ.md
├── MODEL_LICENSE
├── README.md   说明文档
├── README_EN.md
├── api.py
├── cli_demo.py
├── evaluation
│  ├── README.md
│  └── evaluate_ceval.py
├── openai_api.py
├── ptuning
│  ├── README.md 说明文档
│  ├── arguments.py
│  ├── deepspeed.json
│  ├── ds_train_finetune.sh
│  ├── evaluate.sh
│  ├── evaluate_finetune.sh
│  ├── main.py
│  ├── train.sh  训练脚本
│  ├── train_chat.sh
│  ├── trainer.py
│  ├── trainer_seq2seq.py
│  ├── web_demo.py
│  └── web_demo.sh 测试脚本
├── requirements.txt 环境依赖文件
├── resources
│  ├── WECHAT.md
│  ├── cli-demo.png
│  ├── knowledge.png
│  ├── long-context.png
│  ├── math.png
│  ├── web-demo.gif
│  ├── web-demo2.gif
│  └── wechat.jpg
├── utils.py
├── web_demo.py
└── web_demo2.py

# 安装python3.10
pyenv install 3.10.4

# 安装相关依赖

pip install rouge_chinese nltk jieba datasets

pip install -f requirements.txt

p-tuning

P-tuning的全称是Prefix-tuning,意为“前缀调优”。它通过在模型输入前添加小段Discrete prompt(类似填空句),并只优化这个prompt来实现模型微调。P-tuning-v2是基于Prompt-tuning方法的NLP模型微调技术。总体来说,P-tuning-v2是Prompt tuning技术的升级版本,使得Prompt的表示能力更强,应用也更灵活广泛。它被认为是Prompt tuning类方法中效果最优且易用性最好的版本。

进入ptuning目录

代码实现对于 ChatGLM2-6B 模型基于 P-Tuning v2 的微调。P-Tuning v2 将需要微调的参数量,减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,预测最低只需要 7GB 显存即可运行。

将训练和测试数据解压后的 AdvertiseGen 目录放到ptuning目录下。

3、执行训练

训练之前,需要根据自己的训练需求,训练数据和机器配置情况修改代码。

调整

修改训练配置

修改train.sh

# 这两处改为自己数据集的路径
–train_file AdvertiseGen/train.json
–validation_file AdvertiseGen/dev.json
# 数据集少的话,训练步数可以调整
–max_steps 3000

–PRE_SEQ_LEN 和 LR 分别是 soft prompt 长度和训练的学习率,可以进行调节以取得最佳的效果。

–模型量化、批次参数 P-Tuning-v2 方法会冻结全部的模型参数,可通过调整 quantization_bit 来被原始模型的量化等级,不加此选项则为 FP16 精度加载。

在默认配置 quantization_bit=4、per_device_train_batch_size=1、gradient_accumulation_steps=16 下,INT4 的模型参数被冻结,一次训练迭代会以 1 的批处理大小进行 16 次累加的前后向传播,等效为 16 的总批处理大小,此时最低只需 6.7G 显存。若想在同等批处理大小下提升训练效率,可在二者乘积不变的情况下,加大 per_device_train_batch_size 的值,但也会带来更多的显存消耗,请根据实际情况酌情调整。

–模型目录。如果你想要从本地加载模型,可以将 train.sh 中的 THUDM/chatglm2-6b 改为你本地的模型路径。

修改main.py

在代码的351行,代码注释掉了 trainer.save_model(),这是保存模型的语句。当训练完成后就会生成一个pytorch_model.bin文件,后面测试时会用到。

运行

执行以下指令进行训练:

./train.sh

当出现以下信息后,模型训练迭代开始。

{'loss': 3.0614, 'learning_rate': 0.018000000000000002, 'epoch': 4.21}
{'loss': 2.2158, 'learning_rate': 0.016, 'epoch': 8.42}

训练完成后,屏幕将打印这类信息:

***** train metrics *****
 epoch          =   xx
 train_loss        =   xx
 train_runtime      = xx
 train_samples      =   xx
 train_samples_per_second =   xx
 train_steps_per_second  =   xx

4、问题解决

问题一
from rouge_chinese import Rouge
ModuleNotFoundError: No module named 'rouge_chinese'

解决:

没有安装rouge模块,pip安装即可。

pip install rouge_chinese

问题二
[W socket.cpp:558] [c10d] The client socket has failed to connect to [localhost]:12355 (errno: 99 - Cannot assign requested address).

解决:
因为之前安装云容器,云主机访问不到,hosts把相应的配置注释掉即可。

问题三
 RuntimeError: Default process group has not been initialized, please make sure to call init_process_group.

解决:

检查transforms版本,调整transformers版本即可。

问题四
ValueError: Unable to create tensor, you  should probably activate truncation and/or padding with 'padding=True'  'truncation=True' to have batched tensors with the same length. Perhaps  your features 。。

ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 16858) of binary

torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 


解决:

显存不够,调小batch_size等调低显存的方式。

End


相关文章:

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案文章来源地址https://www.toymoban.com/news/detail-735413.html

到了这里,关于GPT实战系列-如何用自己数据微调ChatGLM2模型训练的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ChatGLM2-6B在Windows下的微调

    1、ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统):这是最关键的一篇文章,提供了Windows下的脚本 2、LangChain + ChatGLM2-6B 搭建个人专属知识库:提供了基本的训练思路。 1、已完成ChatGLM2-6B的部署,假设部署位置为D:_ChatGPTlangchain-chatglm_testChatGLM2-6B 2、部署环境 Windows 10 专业

    2024年02月13日
    浏览(54)
  • LLMs之ChatGLM2:基于ChatGLM Efficient Tuning(微调工具包)实现对ChatGLM2进行LoRA微调(CLI/GUI【text-generation-webui】)并进

    LLMs之ChatGLM2:基于ChatGLM Efficient Tuning(微调工具包)实现对ChatGLM2进行LoRA微调(CLI/GUI【text-generation-webui】)并进行推理测试图文教程之详细攻略 目录 1、硬件要求和Python依赖 2、代码和模型权重下载 (1)、项目代码下载

    2024年02月08日
    浏览(40)
  • 【AIGC】Chatglm2-lora微调

    ChatGLM2-6B 源码地址:https://github.com/THUDM/ChatGLM2-6B ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的 第二代版本 ,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性: 1、 更强大的性能 :基于 ChatGLM 初代模型的开发经验,我们全面

    2024年02月11日
    浏览(42)
  • chatglm2-6b在P40上做LORA微调

    目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。 github: https://github.com/THUDM/ChatGLM2-6B ch

    2024年02月10日
    浏览(43)
  • ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统)

    记录一下此时此刻,2023年7月8日22点04,从ChatGLM2-6B在7月4日开放了ptuning到此时此刻,ChatGLM2-6B的微调终于被哥们跑通了! 从 本地部署ChatGLM2-6B 到 本地进行P-tuning微调 ,再到最后的 模型检测 ,哥们全跑通了! 这里非常感谢ChatGLM2-6B|开源本地化语言模型这篇博客!因为我布置

    2024年02月16日
    浏览(44)
  • LLaMA-Factory可视化界面微调chatglm2;LoRA训练微调模型 简单案例

    参考:https://github.com/huggingface/peft https://github.com/hiyouga/LLaMA-Factory 类似工具还有流萤,注意是做中文微调训练这块;来训练微调的chatglm2需要完整最新文件,不能是量化后的模型;另外测试下来显卡资源要大于20来G才能顺利,这边T4单卡训练中间显存不足,需要开启4bit量化才行

    2024年02月05日
    浏览(53)
  • 基于 P-Tuning v2 进行 ChatGLM2-6B 微调实践

    1. SFT监督微调:适用于在源任务中具有较高性能的模型进行微调,学习率较小。常见任务包括中文实体识别、语言模型训练、UIE模型微调。优点是可以快速适应目标任务,但缺点是可能需要较长的训练时间和大量数据。 2. LoRA微调:通过高阶矩阵秩的分解减少微调参数量,不

    2024年02月08日
    浏览(57)
  • chatglm2-6b在P40上做LORA微调 | 京东云技术团队

    目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。 github: https://github.com/THUDM/ChatGLM2-6B ch

    2024年02月09日
    浏览(41)
  • 【ChatGLM_02】LangChain知识库+Lora微调chatglm2-6b模型+提示词Prompt的使用原则

    运行langchain-ChatGLM-master下面的webui.py文件 (1) 配置知识库 新建知识库 向知识库当中添加文件 支持上传的数据格式:word、pdf、excel、csv、txt、文件夹等。但是此处我试了一下 (2) 文档数据测试 word文档测试: (3) 知识库测试模式 知识库测试只会返回输入内容在当前知识库当中的

    2024年02月14日
    浏览(40)
  • 手把手带你实现ChatGLM2-6B的P-Tuning微调

    参考文献:chatglm2ptuning 注意问题1:AttributeError: ‘Seq2SeqTrainer’ object has no attribute \\\'is_deepspeed_enabl torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 可能是版本太高,可以参考chatglm2的环境 1. ChatGLM2-6B的P-Tuning微调 ChatGLM2-6B :https://github.com/THUDM/ChatGLM2-6B 模型地址 :https://hug

    2024年02月17日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包