windows10搭建llama大模型

这篇具有很好参考价值的文章主要介绍了windows10搭建llama大模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

背景

    随着人工时代的到来及日渐成熟,大模型已慢慢普及,可以为开发与生活提供一定的帮助及提升工作及生产效率。所以在新的时代对于开发者来说需要主动拥抱变化,主动成长。        

LLAMA介绍

    llama全称:Large Language Model Meta AI是由meta(原facebook)开源的一个聊天对话大模型。根据参数规模,Meta提供了70亿、130亿、330亿和650亿四种不同参数规模的LLaMA模型,并使用20种语言进行了训练。与现有最佳的大型语言模型相比,LLaMA模型在性能上具有竞争力。
    官网:https://github.com/facebookresearch/llama

注意:本文是llama不是llama2,原理一致!

硬件要求

硬件名称

要求

备注

磁盘

单盘最少120g以上

模型很大的

内存
最少16g
最好32g
gpu
可以没有
当然最好有(要英伟达的)

安装软件

涉及软件版本

软件名称

版本

备注

anaconda3

conda 22.9.0

https://www.anaconda.com/

python

3.9.16

anaconda自带

peft

0.2.0

参数有效微调

sentencepiece

0.1.97

分词算法

transformers

4.29.2

下载有点久

git

2.40.1


torch

2.0.1


mingw


用window安装

protobuf

3.19.0


cuda

https://blog.csdn.net/zcs2632008/article/details/127025294

有gpu才需要安装

anaconda3安装

    安装这个anaconda建议不要在c盘,除非你的c盘够大。

请参考:https://blog.csdn.net/scorn_/article/details/106591160?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168601805516800197073452%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=168601805516800197073452&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-1-106591160-null-null.142^v88^control,239^v2^insert_chatgpt&utm_term=windows10%E5%AE%89%E8%A3%85anaconda3%E6%95%99%E7%A8%8B&spm=1018.2226.3001.4187

创建环境
conda create -n llama python=3.9.16
conda init
进入环境
conda info -e
conda activate llama

windows10搭建llama大模型,llama

后面验证python

windows10搭建llama大模型,llama

peft安装

pip install peft==0.2.0

windows10搭建llama大模型,llama

transformers安装

注意:这个会很大~有点久~

conda install transformers==4.29.2

windows10搭建llama大模型,llama

安装git

https://blog.csdn.net/dou3516/article/details/121740303

windows10搭建llama大模型,llama

安装torch

pip install torch==2.0.1

windows10搭建llama大模型,llama

安装mingw

win+r输入powershell

windows10搭建llama大模型,llama

遇到禁止执行脚本问题:(如果没有异常请跳出这步)

参考

https://blog.csdn.net/weixin_43999496/article/details/115871373

windows10搭建llama大模型,llama

配置权限
get-executionpolicy
set-executionpolicy RemoteSigned
然后输入Y

windows10搭建llama大模型,llama

安装 mingw
iex "& {$(irm get.scoop.sh)} -RunAsAdmin"

windows10搭建llama大模型,llama

windows10搭建llama大模型,llama

安装好后分别运行下面两个命令(添加库):

scoop bucket add extras
scoop bucket add main

windows10搭建llama大模型,llama

输入命令安装mingw

scoop install mingw

windows10搭建llama大模型,llama

安装:protobuf

pip install protobuf==3.19.0

windows10搭建llama大模型,llama

项目配置

下载代码

需要下载两个模型, 一个是原版的LLaMA模型, 一个是扩充了中文的模型, 后续会进行一个合并模型的操作

  • 原版模型下载地址(要代理):https://ipfs.io/ipfs/Qmb9y5GCkTG7ZzbBWMu2BXwMkzyCKcUjtEKPpgdZ7GEFKm/

  • 备用:nyanko7/LLaMA-7B at main

    下载不了的话,请关注【技术趋势】回复llama1获取。

创建文件夹

windows10搭建llama大模型,llama

git lfs install

下载中文模型

git clone https://huggingface.co/ziqingyang/chinese-alpaca-lora-7b

windows10搭建llama大模型,llama

补充Linux图:

windows10搭建llama大模型,llama

下载羊驼模型(有点大)

先建一个文件夹:path_to_original_llama_root_dir

windows10搭建llama大模型,llama

在里面再建一个7B文件夹并把tokenizer.model挪进来。

windows10搭建llama大模型,llamawindows10搭建llama大模型,llama

7B里面放的内容

windows10搭建llama大模型,llama

最终需要的内容如下:

windows10搭建llama大模型,llama

合并模型

下载:convert_llama_weights_to_hf.py

📎convert_llama_weights_to_hf.py

或将以下代码放到

# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import json
import math
import os
import shutil
import warnings

import torch

from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer


try:
    from transformers import LlamaTokenizerFast
except ImportError as e:
    warnings.warn(e)
    warnings.warn(
        "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
    )
    LlamaTokenizerFast = None

"""
Sample usage:

```
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
    --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
```

Thereafter, models can be loaded via:

```py
from transformers import LlamaForCausalLM, LlamaTokenizer

model = LlamaForCausalLM.from_pretrained("/output/path")
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
```

Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""

INTERMEDIATE_SIZE_MAP = {
    "7B": 11008,
    "13B": 13824,
    "30B": 17920,
    "65B": 22016,
}
NUM_SHARDS = {
    "7B": 1,
    "13B": 2,
    "30B": 4,
    "65B": 8,
}


def compute_intermediate_size(n):
    return int(math.ceil(n * 8 / 3) + 255) // 256 * 256


def read_json(path):
    with open(path, "r") as f:
        return json.load(f)


def write_json(text, path):
    with open(path, "w") as f:
        json.dump(text, f)


def write_model(model_path, input_base_path, model_size):
    os.makedirs(model_path, exist_ok=True)
    tmp_model_path = os.path.join(model_path, "tmp")
    os.makedirs(tmp_model_path, exist_ok=True)

    params = read_json(os.path.join(input_base_path, "params.json"))
    num_shards = NUM_SHARDS[model_size]
    n_layers = params["n_layers"]
    n_heads = params["n_heads"]
    n_heads_per_shard = n_heads // num_shards
    dim = params["dim"]
    dims_per_head = dim // n_heads
    base = 10000.0
    inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))

    # permute for sliced rotary
    def permute(w):
        return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)

    print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
    # Load weights
    if model_size == "7B":
        # Not sharded
        # (The sharded implementation would also work, but this is simpler.)
        loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
    else:
        # Sharded
        loaded = [
            torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
            for i in range(num_shards)
        ]
    param_count = 0
    index_dict = {"weight_map": {}}
    for layer_i in range(n_layers):
        filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
        if model_size == "7B":
            # Unsharded
            state_dict = {
                f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
                    loaded[f"layers.{layer_i}.attention.wq.weight"]
                ),
                f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
                    loaded[f"layers.{layer_i}.attention.wk.weight"]
                ),
                f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
                f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
                f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
                f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
                f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
                f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
                f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
            }
        else:
            # Sharded
            # Note that in the 13B checkpoint, not cloning the two following weights will result in the checkpoint
            # becoming 37GB instead of 26GB for some reason.
            state_dict = {
                f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
                    f"layers.{layer_i}.attention_norm.weight"
                ].clone(),
                f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
                    f"layers.{layer_i}.ffn_norm.weight"
                ].clone(),
            }
            state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
                torch.cat(
                    [
                        loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
                        for i in range(num_shards)
                    ],
                    dim=0,
                ).reshape(dim, dim)
            )
            state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
                torch.cat(
                    [
                        loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
                        for i in range(num_shards)
                    ],
                    dim=0,
                ).reshape(dim, dim)
            )
            state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
                [
                    loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
                    for i in range(num_shards)
                ],
                dim=0,
            ).reshape(dim, dim)

            state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
            )
            state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
            )
            state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
            )
            state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
            )

        state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
        for k, v in state_dict.items():
            index_dict["weight_map"][k] = filename
            param_count += v.numel()
        torch.save(state_dict, os.path.join(tmp_model_path, filename))

    filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
    if model_size == "7B":
        # Unsharded
        state_dict = {
            "model.embed_tokens.weight": loaded["tok_embeddings.weight"],
            "model.norm.weight": loaded["norm.weight"],
            "lm_head.weight": loaded["output.weight"],
        }
    else:
        state_dict = {
            "model.norm.weight": loaded[0]["norm.weight"],
            "model.embed_tokens.weight": torch.cat(
                [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
            ),
            "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
        }

    for k, v in state_dict.items():
        index_dict["weight_map"][k] = filename
        param_count += v.numel()
    torch.save(state_dict, os.path.join(tmp_model_path, filename))

    # Write configs
    index_dict["metadata"] = {"total_size": param_count * 2}
    write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))

    config = LlamaConfig(
        hidden_size=dim,
        intermediate_size=compute_intermediate_size(dim),
        num_attention_heads=params["n_heads"],
        num_hidden_layers=params["n_layers"],
        rms_norm_eps=params["norm_eps"],
    )
    config.save_pretrained(tmp_model_path)

    # Make space so we can load the model properly now.
    del state_dict
    del loaded
    gc.collect()

    print("Loading the checkpoint in a Llama model.")
    model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
    # Avoid saving this as part of the config.
    del model.config._name_or_path

    print("Saving in the Transformers format.")
    model.save_pretrained(model_path)
    shutil.rmtree(tmp_model_path)


def write_tokenizer(tokenizer_path, input_tokenizer_path):
    # Initialize the tokenizer based on the `spm` model
    tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
    print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
    tokenizer = tokenizer_class(input_tokenizer_path)
    tokenizer.save_pretrained(tokenizer_path)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_dir",
        help="Location of LLaMA weights, which contains tokenizer.model and model folders",
    )
    parser.add_argument(
        "--model_size",
        choices=["7B", "13B", "30B", "65B", "tokenizer_only"],
    )
    parser.add_argument(
        "--output_dir",
        help="Location to write HF model and tokenizer",
    )
    args = parser.parse_args()
    if args.model_size != "tokenizer_only":
        write_model(
            model_path=args.output_dir,
            input_base_path=os.path.join(args.input_dir, args.model_size),
            model_size=args.model_size,
        )
    spm_path = os.path.join(args.input_dir, "tokenizer.model")
    write_tokenizer(args.output_dir, spm_path)


if __name__ == "__main__":
    main()
执行格式转换命令
python convert_llama_weights_to_hf.py --input_dir path_to_original_llama_root_dir --model_size 7B --output_dir path_to_original_llama_hf_dir

注意:这一步有点久(很长时间)

会报的错:

windows10搭建llama大模型,llama

windows10搭建llama大模型,llama

会在目录中生成一个新目录:path_to_original_llama_hf_dir

windows10搭建llama大模型,llama

执行模型合并命令

下载以下文件到llama目录

📎merge_llama_with_chinese_lora.py

windows10搭建llama大模型,llama

执行合并模型命令
python merge_llama_with_chinese_lora.py --base_model path_to_original_llama_hf_dir --lora_model chinese-alpaca-lora-7b --output_dir path_to_output_dir

windows10搭建llama大模型,llama

windows10搭建llama大模型,llama

会生成一个目录:path_to_output_dir

windows10搭建llama大模型,llama

windows10搭建llama大模型,llama

下载模型

在llama目录下载代码如下:

git clone  http://github.com/ggerganov/llama.cpp

遇到报错

windows10搭建llama大模型,llama

解决办法执行命令

git config --global --unset http.proxy

编译模型&转换格式

编译文件

注意:由于前端我是用powershell方式进行安装所以用第一种方式

#进入 llama.app
cd llama.app
#通过powershell安装的mingw进行编译
cmake . -G "MinGW Makefiles"
 #进行构建
cmake --build . --config Release

windows10搭建llama大模型,llama

windows10搭建llama大模型,llama

#进入 llama.app
cd llama.app
#创建 build文件夹
mkdir build
#进入build
cd build
#编译
cmake ..
#构建
cmake --build . --config Release

移动文件配置

在 llama.app 目录中新建目录 zh-models

将path_to_output_dir文件夹内的consolidated.00.pth和params.json文件放入上面格式中的位置

将path_to_output_dir文件夹内的tokenizer.model文件放在跟7B文件夹同级的位置

最终如下:

windows10搭建llama大模型,llama

windows10搭建llama大模型,llama

windows10搭建llama大模型,llama

转换格式

注意:到 llama.cpp 目录

将 .pth模型权重转换为ggml的FP16格式

生成文件路径为zh-models/7B/ggml-model-f16.bin,执行命令如下:

python convert-pth-to-ggml.py zh-models/7B/ 1

windows10搭建llama大模型,llama

生成结果

windows10搭建llama大模型,llama

windows10搭建llama大模型,llama

对FP16模型进行4-bit量化

执行命令:

D:\ai\llama\llama.cpp\bin\quantize.exe ./zh-models/7B/ggml-model-f16.bin ./zh-models/7B/ggml-model-q4_0.bin 2

生成量化模型文件路径为zh-models/7B/ggml-model-q4_0.bin

windows10搭建llama大模型,llama

windows10搭建llama大模型,llama

运行模型

cd D:\ai\llama\llama.cpp
D:\ai\llama\llama.cpp\bin\main.exe  -m zh-models/7B/ggml-model-q4_0.bin --color -f prompts/alpaca.txt -ins -c 2048 --temp 0.2 -n 256 --repeat_penalty 1.3

结果

windows10搭建llama大模型,llama

最后

     我知道很多同学可能觉得学习大模型需要懂python有一定的难度,当然我是建议先学习好一个语言后再去学习其它语言,其实按照我过来的经验,我觉得python或java都好,语言语法都差不多,只是一个工具只是看我们要不要用。毕竟有java后端的基础再去学python,本人两周基本就上手了。当然还是建议有一个主线,再展开,而不是出什么学什么,真没必要。但是对于技术来说要看价值及发展,有可能现在很流行的技术半年或几年后就过了。当然也不是完全说固步自封,一切看自身条件(阶段、能力、意愿、时间等)、社会发展、价值等。

 参考文章:

    https://zhuanlan.zhihu.com/p/617952293

    https://zhuanlan.zhihu.com/p/632102048?utm_id=0

    https://www.bilibili.com/read/cv24984542/文章来源地址https://www.toymoban.com/news/detail-735697.html

到了这里,关于windows10搭建llama大模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Windows10上使用llama-recipes(LoRA)来对llama-2-7b做fine-tune

    刚刚在Windows10上搭建环境来对llama2做finetune,里面坑还是挺多的,这里把印象中的坑整理了一下以作备忘。 llama-recipes是meta的开源项目,Github地址为:GitHub - facebookresearch/llama-recipes: Examples and recipes for Llama 2 model llama2同样也是meta的开源LLM模型,因此用此项目做finetune应该是正确

    2024年02月10日
    浏览(37)
  • Llama2通过llama.cpp模型量化 Windows&Linux本地部署

    LLaMA ,它是一组基础语言模型,参数范围从7B到65B。在数万亿的tokens上训练的模型,并表明可以专门使用公开可用的数据集来训练最先进的模型,而无需求助于专有和不可访问的数据集。特别是, LLaMA-13B在大多数基准测试中都优于GPT-3(175B) ,并且LLaMA65B与最好的型号Chinch

    2024年02月05日
    浏览(55)
  • 大模型部署手记(8)LLaMa2+Windows+llama.cpp+英文文本补齐

    组织机构:Meta(Facebook) 代码仓:https://github.com/facebookresearch/llama 模型:llama-2-7b 下载:使用download.sh下载 硬件环境:暗影精灵7Plus Windows版本:Windows 11家庭中文版 Insider Preview 22H2 内存 32G GPU显卡:Nvidia GTX 3080 Laptop (16G) 下载llama.cpp的代码仓: git clone https://github.com/ggergan

    2024年02月03日
    浏览(52)
  • 大模型LLaMA在docker环境搭建以及运行教程(含模型压缩)

    未来已来,大模型依据压缩模型的方式,可以在普通的PC上运行. Facebook的LLaMA 模型和Georgi Gerganov 的llama.cpp的结合。 LLaMA,这是一组包含 7B 到 65B 参数的基础语言模型。我们在数万亿个令牌上训练我们的模型,并表明可以仅使用公开可用的数据集来训练最先进的模型,而无需诉诸

    2023年04月18日
    浏览(35)
  • llama.cpp LLM模型 windows cpu安装部署

    参考: https://www.listera.top/ji-xu-zhe-teng-xia-chinese-llama-alpaca/ https://blog.csdn.net/qq_38238956/article/details/130113599 cmake windows安装参考:https://blog.csdn.net/weixin_42357472/article/details/131314105 1、下载: 2、编译 3、测试运行 参考: https://zhuanlan.zhihu.com/p/638427280 模型下载: https://huggingface.co/nya

    2024年02月11日
    浏览(38)
  • 大模型部署手记(11)LLaMa2+Chinese-LLaMA-Plus-2-7B+Windows+llama.cpp+中文对话

    组织机构:Meta(Facebook) 代码仓:GitHub - facebookresearch/llama: Inference code for LLaMA models 模型:LIama-2-7b-hf、Chinese-LLaMA-Plus-2-7B   下载:使用huggingface.co和百度网盘下载 硬件环境:暗影精灵7Plus Windows版本:Windows 11家庭中文版 Insider Preview 22H2 内存 32G GPU显卡:Nvidia GTX 3080 Laptop (1

    2024年02月03日
    浏览(50)
  • 本地搭建【文档助手】大模型版(LangChain+llama+Streamlit)

    本文的文档助手就是:我们上传一个文档,然后在对话框中输入问题,大模型会把问题的答案返回。 先下载代码到本地 LangChain调用llama模型的示例代码:https://github.com/afaqueumer/DocQA(代码不是本人写的,尊重原创) 环境安装 如果没反应可能是缺少环境,打开控制台手动执行

    2024年02月04日
    浏览(47)
  • 大模型部署手记(9)LLaMa2+Chinese-LLaMA-Plus-7B+Windows+llama.cpp+中文文本补齐

    组织机构:Meta(Facebook) 代码仓:GitHub - facebookresearch/llama: Inference code for LLaMA models 模型:llama-2-7b、Chinese-LLaMA-Plus-7B(chinese_llama_plus_lora_7b)   下载:使用download.sh下载 硬件环境:暗影精灵7Plus Windows版本:Windows 11家庭中文版 Insider Preview 22H2 内存 32G GPU显卡:Nvidia GTX 3080 La

    2024年02月03日
    浏览(50)
  • [算法前沿]--000-大模型LLaMA在docker环境搭建以及运行教程(含模型压缩)

    未来已来,大模型依据压缩模型的方式,可以在普通的PC上运行. Facebook的LLaMA 模型和Georgi Gerganov 的llama.cpp的结合。 LLaMA,这是一组包含 7B 到 65B 参数的基础语言模型。我们在数万亿个令牌上训练我们的模型,并表明可以仅使用公开可用的数据集来训练最先进的模型,而无需诉诸

    2024年02月06日
    浏览(81)
  • 使用llama.cpp在本地搭建vicuna 13B语言模型

    有人做了windows下的脚本放到github上了,直接运行就可以了。我在本机试了一下13B的模型能运行,但生成速度非常慢,回复一个问题基本上要花5分钟以上的时间。我的机器配置 3900X 32G内存。 https://github.com/mps256/vicuna.ps1

    2024年02月11日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包