【问题】:矩阵链乘问题:给定n个矩阵{A1,A2,...,An},其中Ai与Ai+1是可乘的,i=1,2...,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
1、按设计动态规划算法的步骤解题。
(1)找出最优解的性质,并刻划其结构特征。
(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解(由子结构的最优解得到原先大问题的最优解)。
2、求算法的时间复杂性,和空间复杂性
3、体会动态规划和穷举法在解决该问题中的本质差异。
问题辅助分析:
(1)问题的描述
给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2,…,n-1。要算出这n个矩阵的连乘积A1A2…An。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。
完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。文章来源:https://www.toymoban.com/news/detail-735922.html
例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4))&#文章来源地址https://www.toymoban.com/news/detail-735922.html
到了这里,关于矩阵连乘问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!