2.Spark的工作与架构原理

这篇具有很好参考价值的文章主要介绍了2.Spark的工作与架构原理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

概述

目标:

  • spark的工作原理
  • spark数据处理通用流程
  • rdd
    • 什么是rdd
    • rdd 的特点
  • spark架构
    • spark架构相关进程
    • spark架构原理

spark的工作原理

spark 的工作原理,如下图
2.Spark的工作与架构原理,spark,spark,大数据,工作原理,架构原理

  • 图中中间部分是spark集群,也可以是基于 yarn 的,图上可以理解为sparkstandalone 集群,集群中有 6 个节点
  • 左边是spark的客户端节点,这个节点主要的任务是向spark集群提交任务,
  • 左边的 hdfs 是提交的任务所需要的数据源,当spark读取hdfs中的数据后,会将数据转化为rddrdd是弹性分布式数据集,是一个逻辑概念,在此,可以先理解为一个数据集合就可,这个rdd是具有分区特性的,如节点1节点2节点3,这样可以轻易的提高数据的并发处理能力
  • 接下来就可以对这rdd数据进行处理了,图中使用了,flatMap 函数,计算之后的结果还是一个带有分区的rdd,就是在节点4节点5节点6
  • 当处理到最后一步的时候是需要将数据存起来的,实际工作中,针对离线计算的,大部分的结果数据都是存储在hdfs上的,也可以存储在其它的存储介质中。

针对上面几条,可以总结出,spark处理数据的基本构成,如下图
2.Spark的工作与架构原理,spark,spark,大数据,工作原理,架构原理

后面 spark 代码中基本都是这三板斧 ,可以参考 单词统计编程的代码

rdd

rddspark 中一个很重要的概念

什么是rdd

在实际工作中,rdd 通常通过 hadoop 上的文件,即 hdfs 文件进行创建,也可以通过程序中的集合来创建,rddspark 提供的核心抽象,全称为 Resillient Distributed Dataset ,即弹性分布式数据集

rdd 的特点

  1. 弹性:rdd 数据默认情况下是存储在内存中,但是在内存资源不足时,spark 也会自动将 rdd 数据写入磁盘
  2. 分布式: rdd 在抽象上来说是一种元素集合,它是被分区的,每个分区分布在集群中的不同节点上,从而让 rdd 中的数据可以被并行操作
  3. 容错性: rdd 最重要的特性就是提供了容错性,可以自动从节点失败中恢复过来,如果某个节点上的 rdd 分区,因为节点故障了,导致数据丢了,那么 rdd 会自动通过自己的数据来源重新计算该分区的数据

spark架构

下面熟悉一下 spark 架构相关的进程信息
注意: 在此是以 sparkstandalone 集群为例进行分析,其实在 spark standalone环境安装 中,成功后有查询对应的 进程 是否成功启动了

spark架构相关进程

  1. driver:编写的 spark 程序就在driver(进程)上,由 driver 进程负责执行,driver 进程所在的节点可以是spark 集群的某一个节点,或者就是提交任务的客户端节点,具体driver进程在哪个节点上启动,是由提交任务时指定的参数决定的
  2. master:集群的主节点中启动的进程,主要负责集群资源管理和分配,还有集群的监控等。
  3. worker:集群的从节点中启动的进程,主要负责启动其它进程来执行具体的数据处理和计算任务
  4. executor:此进程由worker 负责启动,主要为了执行数据处理和计算
  5. taks:是一个线程,由executor 负责启动,是真正干活的

spark架构原理

如下图来看一spark的架构原理
2.Spark的工作与架构原理,spark,spark,大数据,工作原理,架构原理

  1. spark的客户端机器上通过driver进程执行的spark代码,通过spark-submit脚本提交spark任务的时候driver进程就启动了。
  2. driver 启动之后,会做一些初始化操作,并找到集群的master 进程,对spark 程序进行注册
  3. master 收到 spark 程序注册成功之后,会向 worker 节点发送请求,进行资源调试和分配
  4. worker 收到 master 请求后,为任务启动 executor 进程,启动多少个,会根据配置来启动
  5. executor 启动之后会向 driver 进行注册,这样 driver 就能知道哪些 executor 在为它服务了
  6. driver 会根据对 rdd 定义的操作,提交一堆的 task(map,flatMap等) 去 executor 上执行

结束

spark 的工作与架构原理就介绍至此,如有问题,欢迎评论区留言。文章来源地址https://www.toymoban.com/news/detail-735966.html

到了这里,关于2.Spark的工作与架构原理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Spark原理之Cache Table的工作原理及实现自动缓存重复表的思考

    使用此语法,可以由用户自定义要缓存的结果集,实际上就是一个临时表,不过数据存储在Spark集群内部,由Application所分配的executors管理。 一旦定义了一个 缓存表 ,就可以在SQL脚本中随处引用这个表名,提高数据检索速度,同时也会资源不必要的资源开销。 用户可以通过

    2024年04月27日
    浏览(40)
  • 云原生架构设计与实现:Spark 在 K8s 上运行的基本原理

    在 Kubernetes(K8s)中,Pod 是最小的可调度单元。当 Spark 任务运行在 K8s 上时,无论是 Driver 还是 Executor 都由一个单独的 Pod 来表示。每个 Pod 都被分配了一个唯一的 IP 地址,并且可以包含一个或多个容器(Container)。Driver 和 Executor 的 JVM 进程都是在这些 Container 中启动、运行

    2024年01月19日
    浏览(48)
  • 尚硅谷大数据技术Spark教程-笔记01【Spark(概述、快速上手、运行环境、运行架构)】

    视频地址: 尚硅谷大数据Spark教程从入门到精通_哔哩哔哩_bilibili 尚硅谷大数据技术Spark教程-笔记01【Spark(概述、快速上手、运行环境、运行架构)】 尚硅谷大数据技术Spark教程-笔记02【SparkCore(核心编程、案例实操)】 尚硅谷大数据技术Spark教程-笔记03【SparkSQL(概述、核心编程、

    2023年04月21日
    浏览(48)
  • 数据湖架构Hudi(二)Hudi版本0.12源码编译、Hudi集成spark、使用IDEA与spark对hudi表增删改查

    Hadoop 3.1.3 Hive 3.1.2 Flink 1.13.6,scala-2.12 Spark 3.2.2,scala-2.12 2.1.1 环境准备 2.1.2 下载源码包 2.1.3 在pom文件中新增repository加速依赖下载 在pom文件中修改依赖的组件版本: 2.1.4 修改源码兼容hadoop3并添加kafka依赖 Hudi默认依赖的hadoop2,要兼容hadoop3,除了修改版本,还需要修改如下代

    2024年02月06日
    浏览(57)
  • 大数据技术原理与应用 实验6 Spark数据处理系统的搭建

    熟悉常用的Spark操作。 1.熟悉Spark Shell的使用; 2.熟悉常用的Spark RDD API、Spark SQL API和Spark DataFrames API。 操作系统:Linux Spark版本: 1.6 Hadoop版本: 3.3.0 JDK版本:1.8 使用Spark shell完成如下习题: a)读取Spark安装目录下的文件README.md(/usr/local/spark/README.md); b)统计包含“Spark”的单词

    2024年02月09日
    浏览(62)
  • 大数据经典技术解析:Hadoop+Spark大数据分析原理与实践

    作者:禅与计算机程序设计艺术 大数据时代已经来临。随着互联网、移动互联网、物联网等新兴技术的出现,海量数据开始涌现。而在这些海量数据的基础上进行有效的处理,成为迫切需要解决的问题之一。Apache Hadoop和Apache Spark是目前主流开源大数据框架。由于其易于部署

    2024年02月07日
    浏览(43)
  • 大数据技术原理及应用课实验7 :Spark初级编程实践

    实验7  Spark初级编程实践 一、实验目的 1. 掌握使用Spark访问本地文件和HDFS文件的方法 2. 掌握Spark应用程序的编写、编译和运行方法 二、实验平台 1. 操作系统:Ubuntu18.04(或Ubuntu16.04); 2. Spark版本:2.4.0; 3. Hadoop版本:3.1.3。 三、实验步骤(每个步骤下均需有运行截图) 实

    2024年01月22日
    浏览(52)
  • Spark重温笔记(四):秒级处理庞大数据量的 SparkSQL 操作大全,能否成为你的工作备忘指南?

    前言:今天是温习 Spark 的第 4 天啦!主要梳理了 SparkSQL 工作中常用的操作大全,以及演示了几个企业级案例,希望对大家有帮助! Tips:\\\"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊! 喜欢我的博

    2024年04月11日
    浏览(45)
  • Spark(26):Spark通讯架构

    目录 0. 相关文章链接 1. Spark通信架构概述 2. Spark 通讯架构解析  Spark文章汇总  Spark 中通信框架的发展: Spark 早期版本中采用 Akka 作为内部通信部件。 Spark1.3 中引入 Netty 通信框架,为了解决 Shuffle 的大数据传输问题使用 Spark1.6 中 Akka 和 Netty 可以配置使用。 Netty 完全实现

    2024年02月16日
    浏览(36)
  • Apache Doris (二十八):Doris 数据导入(六)Spark Load 1- 原理及配置

    目录 1. 基本原理  2. Spark集群搭建 2.1 Spark Standalone 集群搭建 2.2 Spark On Yarn 配置

    2024年02月16日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包