代码随想录Day32 动态规划01 LeetCodeT509 斐波那契数列 T70 爬楼梯 T746 爬楼梯的最小消耗

这篇具有很好参考价值的文章主要介绍了代码随想录Day32 动态规划01 LeetCodeT509 斐波那契数列 T70 爬楼梯 T746 爬楼梯的最小消耗。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言:动态规划基础

动态规划首先可以解决的问题有背包问题,打家劫舍问题,股票问题,子序列问题等,主要是将一个大的问题切分成多个重叠的子问题,所以动态规划一定是上一个状态递推过来的,有一个重要的状态转移方程,但是这也并不是解题的全部,我们将动态规划的题目基本分为五步来完成,

1.搞明白dp数组的含义

2.搞明白状态转移方程怎么写

3.数组如何初始化

4.确定遍历方式

5.在错误的时候打印出dp数组查看分析问题

LeetCode T509 斐波那契数列

题目链接:509. 斐波那契数 - 力扣(LeetCode)

代码随想录Day32 动态规划01 LeetCodeT509 斐波那契数列 T70 爬楼梯 T746 爬楼梯的最小消耗,代码随想录,数据结构,动态规划,算法

题目思路:

1.dp数组定义

这里我们定义一个数组来表示斐波那契数列

 int[] dp = new int[n+1];

为什么要定义n+1个长度呢?你想想求dp[3]就知道了,前面有三个数字dp[0] = 0,dp[1] = 1      dp[2] = 1.

2.下面明白状态转移方程

我们都知道斐波那契数列式的第n项是由前两个加起来

 dp[i] = dp[i-1]+dp[i-2];

3.初始化数组

初始化前两项,因为这两项要知道才能得到第三项

4.确定遍历方式

由于我们只需要得到第n项,直接for循环即可从前向后遍历

5.打印dp数组

题目代码:

class Solution {
    public int fib(int n) {
        int[] dp = new int[n+1];
       
        if(n<2){
            return n;
        }else{
            dp[0] = 0;
            dp[1] = 1;
            for(int i = 2;i <= n;i++){
            dp[i] = dp[i-1]+dp[i-2];
        }
            return dp[n];
        }


    }
}

注:这题也可以使用递归,是递归的经典例题,但是递归太慢了 

LeetCode T70 爬楼梯

题目链接:70. 爬楼梯 - 力扣(LeetCode)

代码随想录Day32 动态规划01 LeetCodeT509 斐波那契数列 T70 爬楼梯 T746 爬楼梯的最小消耗,代码随想录,数据结构,动态规划,算法

题目思路:

1.搞明白dp数组的含义

dp数组代表到到达第i个台阶有几种方法

2.搞明白状态转移方程怎么写

因为到达第i个台阶可能是两步上来的,也可能是一步上来的,那么我们到第i阶台阶就是第i-1个台阶的方法数加上i-2阶的方法数

这道题的推导公式是这样得来的:
在到达第n层的上一步,我们只有两个选择,走一步,或者走两步。
如果是走一步,我们需要先通过 f(n-1)种方式到达 n-1 层
如果是走两步, 我们需要通过 f(n-2)种方式到达第 n - 2 层
所以综上有 f(n) = f(n-2) + f(n-1)

dp[i] = dp[i-1] + dp[i-2];

3.数组如何初始化

初始化dp[0] = 1,dp[1] = 2

4.确定遍历方式

顺序遍历即可

5.在错误的时候打印出dp数组查看分析问题

题目代码:

class Solution {
    public int climbStairs(int n) {
        if(n == 1){
            return 1;
        }else if(n == 2){
            return 2;
        }
        int[] dp = new int[n];
        dp[0] = 1;
        dp[1] = 2;
        for(int i = 2;i<n;i++){
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n-1];

    }
}

LeetCode T746 爬楼梯的最小消耗

题目链接:746. 使用最小花费爬楼梯 - 力扣(LeetCode)

代码随想录Day32 动态规划01 LeetCodeT509 斐波那契数列 T70 爬楼梯 T746 爬楼梯的最小消耗,代码随想录,数据结构,动态规划,算法

代码随想录Day32 动态规划01 LeetCodeT509 斐波那契数列 T70 爬楼梯 T746 爬楼梯的最小消耗,代码随想录,数据结构,动态规划,算法

题目思路:

1.搞明白dp数组的含义

这里的dp数组表示的是爬楼梯到本层的最小消耗

2.搞明白状态转移方程怎么写

从前一层爬一层的消耗和前两层爬两层的消耗取最小值就是到达本层的最小消耗

3.数组如何初始化

由于题目说我可以选择在第层或者第一层出发,所以dp[0] = 0;dp[1] = 0

int[] dp = new int[cost.length+1];
dp[i] = Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);

4.确定遍历方式

从前往后顺序遍历即可,因为上层是围绕着下层结果而产生的

5.在错误的时候打印出dp数组查看分析问题

注:这里爬到的是cost数组后面那一层而不是cost数组的最后一个元素所在位置文章来源地址https://www.toymoban.com/news/detail-736028.html

题目代码:

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int[] dp = new int[cost.length+1];
        if(cost.length == 0){
            return 0;
        }else if(cost.length == 1){
            return cost[0];
        }else{
            dp[0] = 0;
            dp[1] = 0;
            for(int i = 2;i<=cost.length;i++)
            {
                dp[i] = Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
            }
        }
        return dp[cost.length];


    }
}

到了这里,关于代码随想录Day32 动态规划01 LeetCodeT509 斐波那契数列 T70 爬楼梯 T746 爬楼梯的最小消耗的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 代码随想录Day41:动态规划Part3

    代码随想录Day41:动态规划Part3

    讲解前: 毫无头绪 讲解后: 这道题的动态思路一开始很不容易想出来,虽然dp数组的定义如果知道是动态规划的话估摸着可以想出来那就是很straight forward dp定义:一维数组dp[i], i 代表整数的值,dp[i] 代表将整数 i 拆分的话可以获得的最大乘积 然后呢就是定义递归推导式了,

    2024年04月27日
    浏览(12)
  • 【代码随想录】Day 49 动态规划10 (买卖股票Ⅰ、Ⅱ)

    【代码随想录】Day 49 动态规划10 (买卖股票Ⅰ、Ⅱ)

    https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/ dp[i]表示在第i天时,卖/不卖股票能获得的最大利润: 1、卖股票:dp[i] = prices[i] -minPrice(i天以前的最低价格) 2、不卖股票:dp[i] = dp[i-1](因为不卖股票,所以状态和前一天保持一致) ∴dp[i] = max(dp[i-1], prices[i] - minPrice); https

    2024年02月09日
    浏览(4)
  • Day39 代码随想录(1刷) 动态规划 0-1背包

    题目描述 小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。  小明的行李空间

    2024年04月23日
    浏览(16)
  • 【Day52】代码随想录之动态规划_打家劫舍

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 打印。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印dp日志和

    2024年02月22日
    浏览(12)
  • 【Day42】代码随想录之动态规划0-1背包_416. 分割等和子集

    【Day42】代码随想录之动态规划0-1背包_416. 分割等和子集

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 推导dp数组。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印

    2024年02月20日
    浏览(43)
  • 【Day45】代码随想录之动态规划part7—爬楼梯(进阶)、零钱兑换、完全平方数

    【Day45】代码随想录之动态规划part7—爬楼梯(进阶)、零钱兑换、完全平方数

    今天又是补打卡的一天,开冲!!! 今日任务: 70.爬楼梯(进阶) 322.零钱兑换 279.完全平方数 这道题之前做过一次,但是可以采用完全背包的问题来分析一遍。 卡玛网题目:【57.爬楼梯】 这个题目其实是更难了一点,因为前面的题目都是每次要不爬1阶楼梯,要不爬2阶楼

    2024年03月25日
    浏览(10)
  • 我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分

    我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分

    🔥博客介绍`: 27dCnc 🎥系列专栏: 数据结构与算法 算法入门 C++项目 🎥 当前专栏: 算法入门 专题 : 数据结构帮助小白快速入门算法 👍👍👍👍👍👍👍👍👍👍👍👍 ☆*: .。. o(≧▽≦)o .。.:*☆ ❤️感谢大家点赞👍收藏⭐评论✍️ 今日学习打卡 代码随想录 - 动态规划

    2024年03月11日
    浏览(41)
  • 【Day53】代码随想录之动态规划part10——买卖股票的最佳时机、买卖股票的最佳时机II

    【Day53】代码随想录之动态规划part10——买卖股票的最佳时机、买卖股票的最佳时机II

    昨天已经把打家劫舍的问题解决了,最后一个题目涉及到树形dp比较难(等到二刷的时候再重点看下),今天的任务是解决股票问题。 今日任务: 121.买卖股票的最佳时机 122.买卖股票的最佳时机II Leetcode题目:【121.买卖股票的最佳时机】 因为此题中买卖股票只能买卖一次。

    2024年03月15日
    浏览(14)
  • 代码随想录day01

    ● 思维不难,主要是考察对代码的掌控能力 ● 内存中的存储方式:存放在连续内存空间上的相同类型数据的集合 ● 数组可以通过下标索引获取到下标对应的数据 ● 数组下标从0开始 ● 因为内存空间地址连续,因此删除或增加元素的时候,难免移动其他元素地址 ● Java中的

    2024年02月13日
    浏览(39)
  • 代码随想录二刷day01

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 使用左闭右闭区间的二分查找时, 最后low一定是被查找元素的插入位置,若查找的数带小数,low-1, 便是最终结果 1、左闭右闭 2、左闭右开

    2024年02月12日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包