python opencv之图像分割、计算面积

这篇具有很好参考价值的文章主要介绍了python opencv之图像分割、计算面积。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

以下代码是一个基于K-means聚类算法进行图像分割的实现。通过读取一个彩色图像,将其转化为二维数组形式。然后使用K-means算法对像素点进行聚类,聚类个数为7。根据聚类后的标签值对像素点进行着色,并创建掩膜图像。接着使用形态学开运算和闭运算去掉周围的绿色点和填充区域内部空隙,找到最大的轮廓并计算其面积。最后再将最大轮廓绘制在原始图像上并显示出来。

import cv2
import numpy as np

# 读取彩色图像
img = cv2.imread(r'C:\Users\Pictures\rm.png')

# 将图像数据转换为二维数组形式
values = img.reshape((-1, 3))
values = np.float32(values)

# K-Means聚类
K = 7
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
ret, label, center = cv2.kmeans(values, K, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)

# 创建新图像并根据聚类标签对像素点着色
segmented_img = np.zeros_like(values)
# segmented_img[np.where(label==0)[0], :] = [255, 0, 0] # 给第0类像素点赋值蓝色
segmented_img[np.where(label==1)[0], :] = [0, 255, 0] # 给第1类像素点赋值绿色
# segmented_img[np.where(label==2)[0], :] = [0, 0, 255] # 给第2类像素点赋值红色
# segmented_img[np.where(label==3)[0], :] = [0, 0, 0] # 给第3类像素点赋值黑色
# segmented_img[np.where(label==4)[0], :] = [255, 255, 255] # 给第3类像素点赋值白色

# 将分割后图像重新转化成与原图像相同的维度
segmented_img = segmented_img.reshape(img.shape)
# 创建掩膜图像
mask = np.zeros(segmented_img.shape[:2], dtype=np.uint8)
mask[np.where(np.all(segmented_img == [0, 255, 0], axis=-1))] = 255

# 进行形态学开运算,去掉周围的绿色点
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)

# 进行形态学闭运算,填充区域内部空隙
closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)

# 找到轮廓并获取最大轮廓及其面积
contours, _ = cv2.findContours(closing, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# max_contour = max(contours, key=cv2.contourArea)
total_area = 0
for i, contour in enumerate(contours):
    # 计算轮廓面积
    area = cv2.contourArea(contour)
    total_area += area
# 绘制最大轮廓并显示在原图上
output = img.copy()
cv2.drawContours(output, contours, -1, (0, 255, 0), 2)
cv2.imshow('Contour', output)



# 显示聚类结果
cv2.imshow('Image', img)
cv2.imshow('Segmented Image', segmented_img)
cv2.imshow('Mask', closing)
# 等待关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

python opencv之图像分割、计算面积,python,opencv,机器学习,numpy

python opencv之图像分割、计算面积,python,opencv,机器学习,numpy

python opencv之图像分割、计算面积,python,opencv,机器学习,numpy

python opencv之图像分割、计算面积,python,opencv,机器学习,numpy

几个问题,供读者思考:

  1. 为什么选择K-means聚类算法?

  2. 为什么是聚7类?

  3. 这种方法具有通用性吗,换其他类似图片也提取准确吗?

  4. 还有更好的方法吗,如果目标的轮廓更加复杂,该怎么处理?

  5. 已经算出了图上面积,怎么计算实际面积?文章来源地址https://www.toymoban.com/news/detail-736043.html

到了这里,关于python opencv之图像分割、计算面积的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV 通过计算连通域面积过滤面积小的区域–Python

    代码参考:https://blog.csdn.net/u014264373/article/details/119486850 通过卷积神经网络预测图像的分割结果时,会发现分割外部出现了小面积的连通域。 常识告诉我们,这么小的物体一定不是我们的分割目标,因此,我们通过后处理的方法把它过滤掉,可以提高分割准确度。 这种小面积

    2024年02月08日
    浏览(61)
  • 【python-Unet】计算机视觉~舌象舌头图片分割~机器学习(三)

    返回至系列文章导航博客 完整项目下载:下载链接 【闲鱼】https://m.tb.cn/h.52C8psW?tk=fMpwdwfqjz3 CZ3457 「我在闲鱼发布了【舌象数据集,详情见csdn!http://t.csdn.cn】」 点击链接直接打开 舌体分割是舌诊检测的基础,唯有做到准确分割舌体才能保证后续训练以及预测的准确性。此部

    2023年04月20日
    浏览(117)
  • 竞赛选题 深度学习图像修复算法 - opencv python 机器视觉

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学图像修复算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgradu

    2024年02月08日
    浏览(49)
  • 基于深度学习、机器学习,对抗生成网络,OpenCV,图像处理,卷积神经网络计算机毕业设计选题指导

    开发一个实时手势识别系统,使用卷积神经网络(CNN)和深度学习技术,能够识别用户的手势并将其映射到计算机操作,如控制游戏、音量调整等。这个项目需要涵盖图像处理、神经网络训练和实时计算等方面的知识。 利用深度学习模型,设计一个人脸识别系统,可以识别人

    2024年02月07日
    浏览(88)
  • 【Python】【OpenCV】【NumPy】图像数据的访问

    接上一随笔,这次学习针对图像数据的访问(Numpy.array) 在OpenCV中,使用 imread() 方法可以访问图像,其返回值是一个数组,而根据传入的不同图像,将会返回不同维度的数组。 针对返回的图像数据,即数组,我们是可以进行操作的: 此时,我们就将MyPic这张图的(0, 0)这

    2024年02月05日
    浏览(39)
  • python 机器视觉 车牌识别 - opencv 深度学习 机器学习 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 车牌识别其实是个经典的机器视觉任务了,

    2024年02月06日
    浏览(57)
  • 计算机竞赛 python 机器视觉 车牌识别 - opencv 深度学习 机器学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 车牌识别其实是个经典的机器视觉任务了,

    2024年02月12日
    浏览(65)
  • 【Python】【OpenCV】【NumPy】图像和原始字节的转换

    学习完基础的图像算法,开始接触OpenCV学习: 灰度图中,一个像素点上的灰度级需要一个字节(byte,2^8,8 bit)进行存储,此时的灰度图是二维的。 而当我们需要转换为彩色图时,即三维,便会产生颜色通道(Channel),这个时候,一个像素点上的灰度级便会需要三个字节来

    2024年02月05日
    浏览(35)
  • 深度学习图像风格迁移 - opencv python 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习图像风格迁移 - opencv python 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/danche

    2024年02月04日
    浏览(58)
  • python+opencv+机器学习车牌识别 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于机器学习的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-seni

    2024年02月07日
    浏览(68)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包